
HAL Id: hal-03658932
https://hal.archives-ouvertes.fr/hal-03658932

Submitted on 4 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A KC Map for Variants of Nondeterministic PDDL
Sergej Scheck, Alexandre Niveau, Bruno Zanuttini

To cite this version:
Sergej Scheck, Alexandre Niveau, Bruno Zanuttini. A KC Map for Variants of Nondeterministic
PDDL. 16es journées d’intelligence artificielle fondamentale (JIAF 2022), Jun 2022, Saint-Étienne,
France. �hal-03658932�

https://hal.archives-ouvertes.fr/hal-03658932
https://hal.archives-ouvertes.fr

Actes JIAF 2022

A KCMap for Variants of Nondeterministic PDDL

Sergej Scheck Alexandre Niveau Bruno Zanuttini
Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14 000 Caen, France
{sergej.scheck,alexandre.niveau,bruno.zanuttini}@unicaen.fr

Résumé
Nous étudions différents langages permettant de repré-

senter des actions non-déterministes pour la planification
automatique, du point de vue de la compilation de connais-
sances. Précisément, nous considérons la question de la
concision des langages (quelle est la taille de la descrip-
tion d’une action dans chaque langage?) et des questions
de complexité (traitabilité ou dureté de plusieurs requêtes et
transformations qui surviennent naturellement dans la plani-
fication et le suivi des croyances). Nous étudions une version
abstraite et nondéterministe de PDDL, STRIPS conditionnel
nondéterministe, et les langages NPDDLseq et NPDDLnot
obtenus en ajoutant séquence et négation à PDDL nondéter-
ministe. Nous montrons que ces langages ont une concision
et complexité différente pour les requêtes les plus naturelles.

Abstract
We study different languages for representing nondeter-

ministic actions in planning from the point of view of knowl-
edge compilation. Precisely, we consider succintness issues
(how succinct is the description of an action in each lan-
guage?), and complexity issues (tractability or hardness of
several queries and transformations which arise naturally in
planning and belief tracking). We study an abstract, nonde-
terministic version of PDDL, nondeterministic conditional
STRIPS, and the languages NPDDLseq and NPDDLnot ob-
tained by adding sequence and negation to nondeterministic
PDDL.We show that these languages have different succinct-
ness and different complexity for the most natural queries.

1 Introduction

In automated planning, a central aspect of the description
of problems is the formal representation of actions. Such
representations are indeed needed for specifying the actions
available to the agent (PDDL [13] is a standard language
for this), and also for planners to operate on them while
searching for a plan.
In this paper, we consider different representation lan-

guages within the formal framework of the knowledge com-
pilation map [5]. This framework deals with the study of

formal languages under the point of view of queries (how
efficient is it to answer various queries, depending on the
language?), transformations (how efficient is it to transform
or combine different representations in a given language?),
and succinctness (how concise is it to represent knowledge
in each language?).

The knowledge compilation map has been introduced
for representations of Boolean functions [5]. As far as we
know there has been no systematic study of languages for
representing actions per themselves. This is however an
important problem, as planners need to query action repre-
sentations again and again while searching for a plan (e.g.,
to find out which actions are applicable at the current node
of the search tree), and many of them start by transforming
the action specifications into some representation suited for
this [11, 24, 3, 22]. Hence having a clear picture of the
properties of languages is of interest for developing such
planners.

This paper is an attempt at a systematic study of va-
rious action languages from the point of view of knowledge
compilation. Works with related objectives do exist, but the
focus has been on other aspects of planning, like the re-
presentation of plans [2], axioms [23], or action costs [21].
The only studies about action languages which we are aware
of are those pioneered by Bäckström, but they essentially
consider the representation of actions up to preservation of
plan length [1, 16, 18], while we are interested in a stric-
ter notion whereby the semantics is precisely preserved,
hence preserving more aspects of the planning tasks (like
the number of plans, relationships between variables, etc.).

We are interested here in (purely) nondeterministic ac-
tions, which lie at the core of fully observable nondetermi-
nistic planning and of conformant planning [19, 17, 7, 14,
24, 8]. We also focus on propositional domains, in which
states are assignments to a given set of propositions.

Our mid-term goal is to give a systematic picture of lan-
guages arising from combinations of allowed constructs
among the ones introduced in the literature (like nonde-
terministic choice, iteration, persistency by default, etc.),

and in this work we consider abstract languages which re-
semble variants and extensions of the well-known STRIPS
and PDDL. Orthogonally, we also study two concrete re-
presentations of expressions, as syntactic trees or as more
compact circuits, where identical subexpressions are not
repeated. The former representation gives a natural mea-
sure of the size of action specifications, while the latter is
more compact and is the one typically used in knowledge
compilation literature [5].

The paper is structured as follows. We first give back-
ground about actions and logic (Section 2), then formally
define the action languages which we consider (Section 3).
Then we give our results : results about the complexity of
queries (Section 4) ; separation results, which allow us to
determine the relative succinctness of the languages (Sec-
tion 5), and results about the complexity of transformations
(Section 6). Finally we conclude, discussing some open
problems and perspectives of this work (Section 7).

2 Preliminaries

We consider a countable set of propositional state va-
riables P := {pi | i ∈N}. Let P ⊂ P be a nonempty finite
set of state variables ; a subset of P is called a P-state,
or simply a state. The intended interpretation of a state
s ∈ 2P is the assignment to P in which all variables in s are
true, and all variables in P \ s are false. For instance, for
P := {p1, p2, p3}, s := {p1, p3} denotes the state in which
p1, p3 are true and p2 is false. We write V(ϕ) for the set of
variables occuring in an expression ϕ .

Actions We consider (purely) nondeterministic actions,
which map states to sets of states. Hence a single state may
have several successors through the same action, in contrast
with deterministic actions (which map states to states), and
no relative likelihood is encoded between the successors of
a state, in contrast with stochastic actions (which map states
to probability distributions over states).

Definition 1 (action). Let P⊂P be a finite set of variables.
A P-action is a mapping a from 2P to 2(2

P). The states in
a(s) are called a-successors of s and P is called the scope
of a.

Note that a(s) is defined for all states s. For our results
explicit preconditions are not important ; we will consider
a to be applicable in s if and only if a(s) 6= /0. Every action
a can be identified with a binary transition relation ‖a‖
on states which is defined via ‖a‖ := {(s,s′) | s′ ∈ a(s)}.
Elements of ‖a‖ are called state transitions.

In this article, we are interested in the properties of re-
presentations of actions in various langugages.

Definition 2. [action language] An action language is an
ordered pair 〈L, I〉, where L is a set of expressions and I

is a partial function from L× 2P to the set of all actions
such that, when defined on α ∈ L and P ⊂ P, I(α,P) is a
P-action. If 〈L, I〉 is an action language and L′ ⊆ L then we
call 〈L′, I|L′×2P〉 a sublanguage of 〈L, I〉.

We call the expressions in L action descriptions, and call
I the interpretation function of the language. In this article
I(α,P) will be defined if and only if V(α)⊆ P.

If the language 〈L, I〉 and the set P are fixed or clear from
the context, then we write α(s) instead of I(α,P)(s) for the
set of all α-successors of s. We might also say “action α”,
meaning the action described by the action description α ,
and write ‖α‖ for ‖I(α,P)‖.

Translations In this article, we are interested in the exis-
tence of translations between languages which preserve the
scope of action descriptions, i.e., which do not add new
state variables to the scope in the destination language.

Definition 3 (translation). A translation from an action
language 〈L1, I1〉 to another language 〈L2, I2〉 is a function
f : L1×2P→ L2 such that I1(α,P) = I2(f (α,P),P) holds
for all α ∈ L1 and P⊂ P such that I1(α,P) is defined.

In words, this means that the L1-expression α and the
L2-expression f (α,P) describe the same P-action.
Here, a translation is not allowed to introduce auxiliary

variables. This is in contrast with many studies of compila-
tion for planning. The reason why we focus on this setting is
that we are interested in translating the actions, and not only
the solutions to a planning problem. Our strict notion gua-
rantees that translating the actions of a domain will preserve
all properties : the existence of solution plans of course, but
also their length, their number, and measures of complexity
like many notions of width [17, 12, for instance].
The translation f is said to be polynomial-time if it can

be computed in time polynomial in the size of α and P, and
polynomial-size if the size of f (α,P) is bounded by a fixed
polynomial in the size of α and P. Clearly, a polynomial-
time translation is necessarily also a polynomial-size one,
but the converse is not true in general.

Negation Normal Form A Boolean formula ϕ over a
set Q of variables is said to be in negation normal form
(NNF) if it is built up from literals using conjunctions and
disjunctions, i.e., if it is generated by the following grammar
(where q ranges over Q) :

ϕ ::= q | ¬q | ϕ ∧ϕ | ϕ ∨ϕ

3 Action Languages

Wefirst define the semantics for operatorswhich thenwill
be combined to obtain the languages we study. Applying a
nondeterministic action a in state s can be seen as choosing

nondeterministically which groups of variables to assign
from a set of possible combinations. This motivates the
following definition.

Definition 4 (effect). An effect over a set of variablesP⊂P
is an ordered pair 〈Q+,Q−〉 with Q+,Q− ⊆ P and Q+ ∩
Q− = /0. The set Q+ (resp. Q−) is called a positive (resp.
negative) effect.

In the following we are going to define the set E(α,P,s)
of explicit effects of α in s for action descriptions α , but we
already use it to define the interpretation function, which
simply formalizes the fact that variables not explicitly set
by the action retain their value. For all action descriptions
α and sets of variables P with V(α)⊆ P⊂ P,

∀s⊆P : I(α,P)(s) := {(s∪Q+)\Q− | 〈Q+,Q−〉 ∈E(α,P,s)}

An effect 〈Q+,Q−〉 is said to witness a transition (s,s′) if
(s∪Q+)\Q− = s′. We emphasize that for a transition (s,s′)
theremay exist several effectswitnessing it. For example, gi-
ven P := {p1, p2}, both effects 〈{p2}, /0〉 and 〈{p1, p2}, /0〉}
cause the same transition from s := {p1} to s′ := {p1, p2}.
We say that two effects e1 := 〈Q+

1 ,Q
−
1 〉, e2 := 〈Q+

2 ,Q
−
2 〉

are consistent if Q+
1 ∩Q−2 = Q+

2 ∩Q−1 = /0 ; in other words,
if one effect assigns > to a variable, the other does not
assign⊥ to it. Then the combination of e1 and e2 is defined
to be the effect 〈Q+

1 ∪Q+
2 ,Q

−
1 ∪Q−2 〉. It can be interpreted

as simultaneously executing the assignments of e1 and e2.

Definition 5. Our action languages will be defined as va-
rious combinations of constructs from the grammar

α ::= ε |+p | −p | ϕBα | (α ∪α) | α uα | α ; α | ¬minα

Intuitively, ε describes the action with no effect
(∀s : ε(s) = {s}), +p (resp. −p) is the action which sets
p true (resp. false), B denotes conditional execution, ∪
denotes (exclusive) nondeterministic choice, u denotes si-
multaneous execution, ; denotes sequential execution, and
¬min describes the negation, and, importantly, variables not
explicitly set by the action are assumed to keep their value.
Also observe that auxiliary variables are not allowed —
only variables in P can occur.

Definition 6. Now we can define the effects E(α,P,s) of
action descriptions, and thus the semantics of all action
languages in this article :

1. E(ε,P,s) := {〈 /0, /0〉},
2. E(+p,P,s) := {〈{p}, /0〉}, and E(−p,P,s) :=
{〈 /0,{p}〉},

3. E(ϕBα,P,s) :=

{
E(α,P,s) if s |= ϕ ,
{〈 /0, /0〉} otherwise,

4. E(α ∪β ,P,s) := E(α,P,s)∪E(β ,P,s),

5. E(α uβ ,P,s) := {〈Q+
α ∪Q+

β
,Q−α ∪Q−

β
〉 | 〈Q+

α ,Q
−
α 〉 ∈

E(α,P,s),〈Q+
β
,Q−

β
〉 ∈ E(β ,P,s),Q+

α ∩ Q−
β

= Q−α ∩
Q+

β
= /0},

6. E(α ;β ,P,s) := {〈Q+
β
∪ (Q+

α \Q−
β
),Q−

β
∪ (Q−α \Q+

β
)〉 |

〈Q+
α ,Q

−
α 〉 ∈ E(α,P,s), t := (s∪Q+

α)\Q−α ,〈Q+
β
,Q−

β
〉 ∈

E(β ,P, t)},
7. E(¬minα,P,s) := {〈s′ \ s,s\ s′〉 | s′ /∈ α(s)}

The item 5 says that the effects of α u β in s are
all possible combinations of effects of α and β in s.
As an example, for α := (+p1 ∪ (−p2 u+p3))u (−p2 ∪
+p2), P := {p1, p2, p3}, and any s, we have E(α,P,s) =
{〈{p1},{p2}〉,〈{p1, p2}, /0〉,〈{p3},{p2}〉}, since in the last
combination, −p2u+p3 and +p2 are not consistent. 1
Item 6 says that if a variable is assigned by both α and β ,

then it appears in the effects of α ; β with the same polarity
as in the effects of β . For example, for α := +p1 u+p2
and β :=−p1, the only effect of α ; β in the state s := /0 is
〈{p2},{p1}〉, because the −p1 in β “beats” the +p1 in α .
And item 7 says that ¬minα defines the transition from

s to exactly all the states which were not accessible via
α , with the witnessing effect being the one that assi-
gns only the variables which change their value during
this transition. For example, if P := {p1, p2, p3}, s :=
{p1} and α := +p2 ∪ (−p1 u+p3), then (¬minα)(s) =
{ /0,{p1},{p2},{p1, p3},{p2, p3},{p1, p2, p3}}, and the ef-
fect of ¬minα witnessing the transition from {p1} to
{p1, p3} is 〈{p3}, /0〉.
We emphasize that explicit effects (of subactions) mat-

ter only for u, in the sense that for other constructs, the
transition relation ‖α‖ of α only depends on the transition
relation of its subactions.

Note that the expression+pu−p (for an arbitrary p∈P)
defines an action with no successor (which can be interpre-
ted as an execution failing). We use ⊥ as a shorthand for it
(hence I(⊥,P)(s) = /0 for all P ⊂ P,s ⊆ P). We also high-
light that B is not necessarily expressing a precondition. If
ϕ is not satisfied in a state s then ϕBα simply modifies no
variable in s. If we want to express that ϕ is a precondition
forα being applicablewe need towrite (ϕBα)u(¬ϕB⊥).

Being given the grammar from Definition 5 and the in-
terpretation from Definition 6 we can now define our action
languages. In the following definitions p ranges over P and
ϕ over formulas in NNF over P.

Definition 7 (NPDDL). An NPDDL action description is
an expression α generated by the grammar

α ::= ε |+p | −p | ϕBα | (α ∪α) | α uα

NPDDL can be seen as an abstract version of grounded
PDDL extended to nondeterminism (in the sense of [4]).

1. Note that this is in contrast to the usual semantics of STRIPS, where
addition would override deletion, thus “forgetting” −p2.

The next language can be seen as a nondeterministic exten-
sion of STRIPS [6] with arbitrary boolean NNF conditions.

Definition 8 (conditional STRIPS). An NSTRIPS action
description is an NPDDL expression of the form

nl

i=0

(
ϕiB

(
(`1,1

i u . . .u `
1, j1
i)∪ . . .∪ (`ki,1

i u . . .u `
ki, jki
i)

))
where each `k, j

i is either ε , +p or −p for some p ∈ P. In
words, an NSTRIPS action description specifies a set of
conditions so that, when the action is applied in a state s,
for each condition satisfied by s exactly one of the corres-
ponding effects occurs.

The last two languages can be seen as extensions of
NPDDL via the sequence or the negation operator.

Definition 9 (NPDDLseq, NPDDLnot). An NPDDLseq ac-
tion description α is generated by the grammar

α ::= ε |+p | −p | ϕBα | (α ∪α) | α uα | α ; α

An NPDDLnot action description α is generated by the
grammar

α ::= ε |+p | −p | ϕBα | (α ∪α) | α uα | ¬minα

Obviously NSTRIPS is a sublanguage of NPDDL in
the sense of Definition 2, and NPDDL is a sublanguage of
NPDDLnot and NPDDLseq. NSTRIPS is complete, since
any action a can at least be represented by one condition
for each state s (satisfied only by s), associated to either
(1) a choice (∪) between some “conjunctions” of atoms,
one conjunction per a-successor s′ of s (setting all variables
as in s′), or (2) to the degenerate choice of conjunctions ⊥,
when a(s) is empty. Therefore all languages in this article
are complete.

While the choice ∪ is a natural construct to allow for
expressing nondeterminism, and ±p, u and B are abstrac-
tions of the natural properties of PDDL and STRIPS, the
sequence and the negation operators require an illustration
of their possible use.

Example 10. The sequence operator is particularly useful
for describing actions featuring an intermediate nondeter-
ministic process whose outcome influences the final result.
For example, the NPDDLseq expression

+ peven ;(
+ p1u (pevenB−peven)u (¬pevenB+peven)

)
∪ −p1 ;

. . .(
+ pnu (pevenB−peven)u (¬pevenB+peven)

)
∪ −pn ;

¬pevenB⊥

describes an action which maps any state to the set of all
states with an even number of pi’s, and peven, set to true. An

action description without the sequence connective would
need to enumerate all possible combinations directly, re-
sulting in an exponential tree.

Example 11. Imagine a self-driving car on a road where
there might be an obstacle. Then a possible scenario
could be a collision, with the following NPDDL descrip-
tion over the state variables P = {high_speed,obstacle,
tire_flat, tank_leaking,bumper_dented,door_blocked,
traffic_barrier,upside_down} :

β := obstacleB
(
(+tire_flat∪ ε)u (−high_speed∪ ε)

)
u
(
high_speedB

 (+tank_leaking∪ ε)
ubumper_dented
udoor_blocked

)
u
(
¬traffic_barrierB+upside_down∪ ε

)


This “action” describes the effect of the collision, hence
¬minβ describes that the effects of the collision do not occur.
As a consequence, if α otherwise describes the effects of
one of the actions of the car, action α ∧¬minβ describes
the same action but taking into account the fact that the car
has a built-in collision avoidance system.

Representations Since we are interested in the succinct-
ness of languages, it is crucial to define the size of action
descriptions. For this we consider two variants of each lan-
guage. The first variant corresponds to a representation of
the expressions α in the language by their syntactic tree (in-
cluding the Boolean formulas occuring in the expression, if
any). The second variant corresponds to the representation
of these expressions α by the directed acyclic graph, or
circuit, obtained from the syntactic tree of α by iteratively
identifying the roots of two isomorphic subexpressions to
each other, until no more reduction is possible. Clearly, for
all expressions α , the circuit associated to α in this manner
is unique, and it can be computed in polynomial time from
the tree or from a nonreduced circuit.

We write T-NPDDL, T-NPDDLseq and T-NPDDLnot
for those languages with expressions represented as
trees, and C-NNFAT, C-NPDDL, C-NPDDLseq and
C-NPDDLnot for those languages with expressions repre-
sented as reduced circuits. SinceNSTRIPS is flat (the depth
of the underlying graph is bounded), there is no difference
between the circuit and the tree versions up to polynomial-
time transformations, except for the representation of condi-
tions ϕ ; since, as it turns out, the representation of condi-
tions does not affect the complexity results in this paper, we
onlywriteNSTRIPSwithout specifying the representation.

4 Complexity of Queries

We now turn to studying the complexity of queries on
action descriptions.We concentrate on three natural queries

for planning, corresponding to checking the existence of a
transition, deciding applicability of an action, and deciding
whether a (sequential) plan reaches a goal.

Definition 12 (queries). Let 〈L, I〉 be a fixed action lan-
guage, α , α1, . . . ,αk be action descriptions in L, P⊂P be a
set of variables such that I(α,P) and I(α1,P), . . . , I(αk,P)
are defined, and s, s′ be P-states. We consider the following
decision problems.
— Is-Succ : given α , P, s, s′, decide whether s′ is an

α-successor of s.
— Is-Applic : given α , P, s, decide whether α(s) is

non-empty.
— Entails : given α1, . . . ,αk, P, s, and an NNF formula

ϕ over P, decide whether s′ |= ϕ for all s′ ∈ (α1 ; . . . ;
αk)(s). 2

Note that if α1 ; . . . ; αk has no successors for s, then it
automatically entails any formula ϕ , especially any unsa-
tisfiable formula, say ϕ := p∧¬p.

Is-Succ is the most basic query which corresponds to
model checking for Boolean formulas. We will see later
that it is usually enough to know the complexity of Is-Succ
to conclude about the other queries.
The first result is a technical one and will be used later

in succinctness proofs. It can be easily deduced from the
fact that for a bounded number of variables the number of
possible effects is bounded, too.

Lemma 13. Let k ∈ N be fixed, and assume |P| ≤ k (i.e.
the size of the scope of the described actions is fixed). Then
Is-Succ can be solved in polynomial time for all languages
which we consider.

The next two statements were proven in [20].

Proposition 14. Is-Succ is NP-complete for NSTRIPS,
T-NPDDL, C-NPDDL and T-NPDDLseq.

Proposition 15. Is-Succ is PSPACE-complete for
C-NPDDLseq.

In order to prove the theorem about Is-Succ in
NPDDLnot, we require a notation and a lemma.

Notation 16. Let n ∈ N, and let Xn := {x1, . . . ,xn} be a
set of variables. Observe that there are a cubic number Nn
of clauses of length 3 over Xn (any choice of 3 variables
with a polarity for each). We fix an arbitrary enumeration
γ1,γ2, . . . ,γNn of all these clauses, and we define Pn ⊂ P to
be the set of state variables {p1, p2, . . . , pNn}. Then to any
3-CNF formula ϕ we associate the Pn-state s(ϕ) = {pi |
i ∈ {1, . . . ,Nn},γi ∈ ϕ}, and dually, to any Pn-state s, we
associate the 3-CNF formula over Xn, written ϕ(s), which
contains exactly those clauses γi for which pi ∈ s holds.

2. By s′ ∈ (α1 ; . . . ; αk)(s) we mean that there are s0,s1, . . . ,sk with
s = s0, si ∈ αi(si−1) for i = 1, . . . ,k, and sk = s′.

Example 17. Let n := 2, and consider an enumeration of
all clauses over X2 := {x1,x2} which starts with γ1 := (x1∨
x1 ∨ x2),γ2 := (x1 ∨ x1 ∨¬x2),γ3 := (x1 ∨¬x1 ∨ x2),γ4 :=
(x1∨¬x1∨¬x2),γ5 := (¬x1∨¬x1∨ x2),

Then the 3-CNF ϕ := (x1∨x1∨x2)∧ (¬x1∨¬x1∨x2) is
encoded by the state s(ϕ) = {p1, p5}.

The statement of the lemma can be shown by an easy
induction.

Lemma 18. Let ϕ , ψ be 3-CNF formulas, let s(ϕ)
and s(ψ) be as in Notation 16, and define the QBF
Ψn

ϕ
:= ∃x1 : ¬(∃x2 : ¬(. . .¬(∃xn : ϕ) . . .)). Then the follo-

wing hold :
1. If n is odd : if Ψn

ϕ is true and s(ψ)⊆ s(ϕ) then Ψn
ψ is

true
dually : if Ψn

ϕ is false and s(ψ)⊇ s(ϕ) then Ψn
ψ is false

2. If n is even : if Ψn
ϕ is true and s(ψ)⊇ s(ϕ) then Ψn

ψ is
true
dually : if Ψn

ϕ is false and s(ψ)⊆ s(ϕ) then Ψn
ψ is false

Notation 19. Using Notation 16, for all n ∈ N we define
the T-NPDDL action description αsat

n :

α
sat
n :=

l

x∈Xn

 (l

γi : x∈γi

(+pi∪ ε)
) ∪ (l

γi : ¬x∈γi

(+pi∪ ε)
) 

Intuitively, αsat
n chooses an assignment (true or false) to

each variable in Xn (outermost ∪). Whenever it chooses an
assignment for x, for each possible clause which is satisfied
by this assignment (innermost u), it chooses whether to
include this clause into the result, or not (innermost ∪).
Hence it builds a formula which is satisfied at least by its
choices, and clearly, any satisfiable 3-CNF formula can be
built in this manner.

Lemma 20. Let n ∈N, and let ϕ be a 3-CNF formula over
Xn. Then ϕ is satisfiable if and only if s(ϕ) is an αsat

n -
successor of the state /0.

Proposition 21. Is-Succ is PSPACE-complete for
T-NPDDLnot and C-NPDDLnot.

Proof. For membership observe that every execution of the
circuit can be simulated in polynomial space and we can do
it until we find a witness for the transition (s,s′), if any.

Not let the sets Pn,Xn and clauses γi be as in Notation 16.
For hardness, we show that a quantified Boolean formula
Φ := ∃x1 : ¬(∃x2 : ¬(. . .(∃xn : ϕ))), withϕ a 3-CNF, is true
if and only if s(ϕ) ∈ αn

1 (/0) with
1. αn

n := χn
n

2. αn
k := χn

k u
(
¬min¬min(ρ

n
k u (¬minαn

k+1))
)
with

— χn
k :=

(d

γi : xk∈γi

(+pi∪ ε)
)
∪
(d

γi : ¬xk∈γi

(+pi∪ ε)
)

— ρn
k := (

d

γi : xk∈γi

−pi)∪ (
d

γi : ¬xk∈γi

−pi)

In the following we give an intuition for what these
(sub)actions do in s := /0. ρn

k chooses an assignment to
xk and explicitly prohibits to add any of the clauses that
contain a literal which is true under this assignment (i.e.
is satisfied by this assignment). χn

k chooses an assignment
to xk and then produces nondeterministically any possible
set of clauses which are satisfied by this assignment. Re-
call that for all actions δ we have ‖δ‖= ‖¬min¬minδ‖ ; the
double negation here serves to make sure that transitions
are witnessed by minimal effects.

Throughout the proof we use the following notation :
ν=k refers to an assignment to xk and ν≤` to an assignment
to x1, . . . ,x`. If ν≤k−1 and ν=k are clear from the context,
then ν≤k refers to the induced joint assignment to x1, . . . ,xk.
Finally, for an assignmentν wedenote by t(ν) the encodings
(via Notation 16) of 3-clauses which are satisfied by ν .
We denote by Φν≤k the formula

∃xk+1 : ¬(∃xk+2 : ¬(. . .¬(∃xn : ϕ|ν≤k
))). Now we prove the

claim that for every 0≤ k ≤ n−1 we have :

for all ν≤k : [Φν≤k true ⇐⇒ s(ϕ)\ t(ν≤k) ∈ α
n
k+1(/0)]

After having shown the claim for k = 0 we are done with
showing the main claim because Φν≤0 = Φand t(ν≤0) = /0
(since ν≤0 is the empty assignement). .
We start with k := n−1. In this case, Φν≤k is just an exis-
tentially quantified 3-CNF which is true (being already
conditioned by an assignment ν≤k to x1, . . . ,xn−1) if and
only if the clauses which have not yet been satisfied by
ν≤k (i.e. s(ϕ) \ t(ν≤k)) can be satisfied by an assignment
to xn, which is equivalent to s(ϕ) \ t(ν≤k) being an αn

n -
successor of /0 (the statement is analogous to the statement
of Lemma 20). Now we assume that the claim has already
been shown for k, and we want to show it for k− 1 : we
consider an assignment ν≤k−1 to x1, . . . ,xk−1, and we prove
that Φν≤k−1 is true if and only if s(ϕ)\ t(ν≤k−1) ∈ αn

k (/0) =(
χn

k u
(
¬min¬min(ρ

n
k u (¬minαn

k+1))
))

(/0).
“=⇒ :” Suppose that Φν≤k−1 is true. Then there exists an

assignment ν=k to xk such that Φν≤k is false. By the induc-
tion hypothesis thismeans thatT := s(ϕ)\t(ν≤k) /∈αn

k+1(/0)
and thus T ∈ ¬minαn

k+1(/0). Since t(ν=k)⊆ t(ν≤k), we have
t(ν=k)∩T = /0, therefore the execution of ρn

k (re)assigning
variables in t(ν=k) to ⊥ is consistent with the effect of
¬minαn

k+1 leading to T . Hence T ∈ (ρn
k u¬minαn

k+1)(/0),
and adding the double negation we have T ∈¬min¬min(ρ

n
k u

¬minαn
k+1)(/0) with the guarantee that the effect eT witnes-

sing this transition isminimal – and thus, since the transition
starts from /0, that eT has no negative effects.
Now observe that, by construction of χn

k , any subset U
of t(ν=k) is a successor of /0 via χn

k and the transition
is witnessed by a purely positive effect eU . This applies
to the subset U := (s(ϕ) \ t(ν≤k−1))∩ t(ν=k). All in all,
combining eT and eU (which are necessarily consistent

since both contain only positive effects), we get that
U ∪T ∈ χn

k u
(
¬min¬min(ρ

n
k u¬minαn

k+1)
)
(/0) = αn

k (/0). Gi-
ven that t(ν≤k)) = t(ν≤k−1)∪ t(ν=k), it is not hard to see
that U ∪T = s(ϕ)\ t(ν≤k−1), which proves the claim.
“⇐= :” Now assume that s(ϕ) \ t(ν≤k−1) ∈ αk(/0) =

χn
k u
(
¬min¬min(ρ

n
k u¬minαn

k+1)
)
(/0).

We first consider the case when n− k is odd. From the
assumption we get that there exist U,T such that s(ϕ) \
t(ν≤k−1) =U ∪T with U ∈ χn

k (/0) and T ∈ ¬min¬min(ρ
n
k u

¬minαn
k+1)(/0). So T ⊆ s(ϕ) \ t(ν≤k−1) so there exists

a V such that (s(ϕ) \ t(ν≤k−1)) \ V ∈ ¬min¬min(ρ
n
k u

¬minαn
k+1)(/0), and therefore (s(ϕ)\ t(ν≤k−1))\V ∈ (ρn

k u
¬minαn

k+1)(/0). Let 〈Q+,Q−〉 be the effect of ρn
k u¬minαn

k+1
witnessing this transition. By definition of ρn

k (which is
responsible for Q− since ¬minαn

k+1 has only positive ef-
fects in /0) there exists an assignment ν=k to xk such that
t(ν=k) = Q−. Since Q+ ∩Q− = /0, it holds that Q+ ⊆
(s(ϕ)\ t(ν≤k−1))\ t(ν=k) = s(ϕ)\ t(ν≤k). It also holds that
Q+ ∈ ¬minαn

k+1(/0) because ρn
k has only negative effects.

Thus Q+ is a set of clauses which encodes a 3-CNF for-
mula ψ with s(ψ)⊆ s(ϕ)\ t(ν≤k)⊆ s(ϕ) and by the induc-
tive assumption ∃xk+1 : ¬(∃xk+2 : ¬ . . .¬(∃xn : ψ|ν≤k

) . . .)
is false. With the first statement of Lemma 18 (recall that
n− k and hence the number of quantifiers was odd) it fol-
lows that ∃xk+1 : ¬(∃xk+2 : ¬ . . .¬(∃xn : ϕ|ν≤k

) . . .) is false,
too, so Φν≤k−1 is true.
We now consider the case that n − k is even. For
the effect 〈Q+,Q−〉 witnessing the transition from /0
to s(ϕ) \ t(ν≤k−1) there must be an effect 〈U+, /0〉 of
χn

k with U+ ⊆ Q+ and by construction of χn
k there

exists an assignment ν=k with U+ ⊆ t(ν=k). There-
fore there must exist an effect 〈T, /0〉 of ¬min¬min(ρ

n
k u

¬minαn
k+1) in /0 with T ⊇ Q+ \U+ ⊇ (s(ϕ) \ t(ν≤k−1)) \

t(ν=k) = s(ϕ) \ t(ν≤k). It follows that T ∈ ¬min¬min(ρ
n
k u

¬minαn
k+1)(/0) and therefore T ∈ (ρn

k u¬minαn
k+1)(/0) and

thus T ∈ ¬minαn
k+1(/0) since ρn

k does not have positive ef-
fects. T encodes a 3-CNF formula ψ such that s(ψ) \
t(ν≤k) ⊇ s(ϕ) \ t(ν≤k) and by the inductive assumption
∃xk+1 : ¬(∃xk+2 : ¬ . . .¬(∃xn : ψ|ν≤k

) . . .) is false. Since
n− k is even we apply the second statement of Lemma 18
and conclude that ∃xk+1 : ¬(∃xk+2 : ¬ . . .¬(∃xn : ϕ|ν≤k

) . . .)
is false, too. Therefore Φν≤k−1 is true. �

Lemma 22. Is-Succ is polynomial-time reducible to
Is-Applic for T-NPDDLseq, C-NPDDLseq, T-NPDDLnot
and C-NPDDLnot.

Proof. For a state s let ψs denote the formula (
∧

p∈s p)∧
(
∧

p/∈s¬p). Let α be a (tree- or circuit) NPDDLseq action.
For all states s,s′ it is easy to see that we have s′ ∈ α(s) if
and only if the action (α ; (¬ψs′ B⊥)) is applicable in s.
Now let β be a (tree- or circuit) NPDDLnot action descrip-
tion and s,s′ be P-states. We define ρs′ :=

(
(
d

p∈s′+p)u
(
d

p/∈s′−p)
)
, the deterministic action leading from all states

to s′. Then we have s′ ∈ β (s) if and only if the action
γ := ¬min(¬minβ ∪¬minρs′) is applicable in s because it is
easy to see that γ satisfies γ(s) = β (s)∩ρs′(s). �

Corollary 23. Is-Applic is NP-complete for NSTRIPS,
T-NPDDL, C-NPDDL, and T-NPDDLseq, and it is
PSPACE-complete for C-NPDDLseq, T-NPDDLnot and
C-NPDDLnot.

Proof. For NPDDLseq and NPDDLnot hardness follows
from Lemma 22 together with the previous hardness results
about Is-Succ (Propositions 15 and 21). For NSTRIPS the
result has been proven in [20]. Membership is clear because
applicability can be witnessed by giving a successor and
verifying successorship. �

Lemma 24. The complement of Is-Applic is polynomial-
time reducible to Entails for all languages.

Proof. An action described by α is non-applicable in s (i.e.
it has no successors in s) if and only if all α-successors s′

of s satisfy p∧¬p for an arbitrary p, i.e. if and only if α

entails ϕ := p∧¬p in s. �

Corollary 25. Entails is coNP-complete for NSTRIPS,
T-NPDDL, C-NPDDL, and T-NPDDLseq, and it is
PSPACE-complete for C-NPDDLseq, T-NPDDLnot, and
C-NPDDLnot.

Proof. We first recall that PSPACE = coPSPACE. Then
hardness follows for all the languages from the reduction of
non-applicability to entailment together with the hardness
results about Is-Applic (Lemma 22). Membership has been
shown in [20]. �

5 Succinctness

We now give negative results about the existence of
polynomial-size translations, hence about the relative suc-
cinctness of languages [5]. Recall that all the languages
which we study are complete, thus our definition is a bit
simpler than the usual one.

Definition 26 (succinctness). A complete action language
L1 is at least as succinct as a complete action language L2 if
there exists a polynomial-size translation from L2 into L1.

Clearly, if L2 is a sublanguage of L1 then L1 is at least as
succinct as L2.
Our succinctness separation results rely on assump-

tions about the nonuniform complexity classes P/poly and
NP/poly. Recall that P/poly is the class of all decision
problems such that for all n ∈ N, there is a polynomial-
time algorithm which decides the problem for all inputs of
size n, NP/poly is defined analogously. The assumptions
NP 6⊆ P/poly, coNP 6⊆ NP/poly and PSPACE 6⊆ NP/poly
which we use are standard ones.

Given two disjoint sets of variables P,Q a (P∪Q)-action
a, and an assignment t ⊆Q to the variables in Q, we define
the t-conditioning of a to be the P-action a|t satisfying ∀s⊆
P : a|t(s) = {s′ | (s′ ∪ t) ∈ α(s∪ t)}. The next lemma will
be used to partially separate NPDDLseq from NPDDLnot.

Lemma 27. Let P and Q be disjoint sets of variables, α

be a T-NPDDLnot (resp. C-NPDDLnot) expression for a
(P∪Q)-action, and t ⊆ Q be an assignment to the va-
riables in Q. Then we can compute a T-NPDDLnot (resp.
C-NPDDLnot) expression f (α) for the t-conditioning of α

in time polynomial in |α|.

Proof. Simply replace all leaves of the form +q with
q ∈ Q∩ t by ε , all leaves of the form +q with q ∈ Q\ t by
⊥ (failure), and dually for −q, and for all subexpressions
ϕBβ , simplify ϕ by the assignment t to Q. �

Proposition 28. If NP 6⊆ P/poly then there is
no polynomial-size translation from T-NPDDLseq to
T-NPDDLnot, nor from C-NPDDLseq to C-NPDDLnot.

Proof. Let n ∈N, and let ϕ be a 3-CNF formula over a set
of variablesXn := {x1, . . . ,xn}. Recall fromNotation 16 that
we can encode ϕ over a set Pn ⊆ P. Finally, let psat ∈ P be
a fresh variable. We define γsat

n to be the following action :
nl

i=1

(+xi∪−xi);(ψnB+psat)u (¬ψnB−psat);
nl

i=1

−xi

where ψn is the NNF
∧Nn

i=1(¬pi∨
∨

`∈γi
`), which is satisfied

if and only if each clause γi which is in ϕ (as witnessed
by pi being true) is also satisfied. In words, γsat

n guesses an
assignment to V(ϕ), then sets psat according to whether ϕ

is satisfied by this assignment, and finally resets all guessed
variables to false. Note that γsat

n depends on n but not on ϕ ,
and that γsat

n is polynomial in n.
Clearly, s(ϕ)∪{psat} is a γsat

n -successor of s(ϕ) if and
only if ϕ is satisfiable. Hence the following decision pro-
blem is NP-hard :

— Input : a 3-CNF formula ϕ

— Question : is s(ϕ)∪{psat} a γsat
n -successor of s(ϕ)?

Now assume that there is a polynomial-size translation f
from T-NPDDLseq to T-NPDDLnot, and for all n ∈ N let
δ sat

n := f (γsat
n). Let ϕ be a 3-CNF formula over n variables.

Since δ sat
n is in NPDDLnot, we can apply Lemma 27 with

Q := Pn ∪{x1 . . . ,xn} and t := s(ϕ), to get an expression
in which the only occuring variable is psat, and {psat} is a
successor of /0 if and only if s(ϕ)∪{psat} is a δ sat

n -sucessor
of s(ϕ), that is, if and only if ϕ is satisfiable. Since this ex-
pression has only one variable, with Lemma 13 we see that
successorship can be decided in polynomial time, implying
NP⊆ P/poly. The proof is exactly the same for circuits. �

Proposition 29. If PSPACE 6⊆ NP/poly then there is no
polynomial-size translation neither from C-NPDDLnot into
C-NPDDL nor from T-NPDDLnot into T-NPDDL.

Proof. If NPDDLnot was translatable into NPDDL with
only a polynomial increase in size, we could translate αn

1
from Proposition 21 into a polynomial-sized equivalent ac-
tion f (αn

1) in NPDDL. Since αn
1 does not depend on a for-

mula but only on the number of variables, it would follow
that deciding the validity of a quantified Boolean formula
of the form ∃x1 : ¬(∃x2 : ¬(. . .¬(∃xn : ϕ))) with a 3-CNF
ϕ amounts to checking s(ϕ) ∈ αn

1 (/0), and we would ob-
tain a nonuniform NP-algorithm for a PSPACE-complete
problem,implying PSPACE⊆ NP/poly. �

Proposition 30. There exists no polynomial-size transla-
tion of C-NPDDL into NSTRIPS.

Proof. The majority function (which returns true if and
only if at least half of its arguments are true) can be com-
puted by a boolean circuit ψ of linear size and logarithmic
depth [15]. Consider an action a over Pn = {p1, . . . , pn}
which is applicable only in s = /0 and in this state it pro-
duces nondeterministically all s′ with |s′| ≥ n

2 . Thus it is
obviously representable by a polynomial-size circuit NNF
action theory ψ ′n, and this can be translated into C-NPDDL
in polynomial time [20]. Now every NSTRIPS representa-
tion of a can without loss of generality be assumed to be of
the form (ϕnBαn)u (¬ϕnB⊥) with ϕn = ¬p1∧ . . .∧¬pn
and αn being an unconditioned NSTRIPS expression. By
replacing u by ∧, ∪ by ∨, +p by p and −p by ¬p we
would then obtain a formula over Pn whose models are αn-
successors of /0, thus obtaining a boolean circuit of boun-
ded depth of size polynomial in n for the majority function,
which contradicts a result from [9]. �

6 Transformations

One of the key aspects of knowledge compilation is the
study of transformations that a language supports [5]. In
general, we are interested in finding out whether a given
transformation is possible in polynomial time, and other-
wise, whether it is at least possible without a superpolyno-
mial explosion in size.

Let 〈L, I〉 be a fixed action language, let α,α1,α2 be
action descriptions inL,P⊂P be a set of variables such that
I(α,P), I(α1,P), and I(α2,P) are defined, and let s, s′ be
P-states. We study the following computational problems.
— Sequence : given α1,α2 ∈ L, compute an action

description β ∈ L such that for all s : β (s) = {s′ |
∃t such that t ∈ α1(s) and s′ ∈ α2(t)}.

— Choice : givenα1,α2 ∈ L, compute an action descrip-
tion β ∈ L such that for all s : β (s) = α1(s)∪α2(s).

— Negation : given α ∈ L, compute an action descrip-
tion β ∈ L such that for all s : β (s) = {s′ | s′ /∈ α(s)}.

We insist that for each one it is required that the output
be in the same language as the input description(s). We also
consider the problem of extracting the precondition.

— Ex-Prec : given α ∈ L and P⊂P, compute an NNF
formula ϕ such that for all s : α(s) 6= /0 ⇐⇒ s |= ϕ .

We see it as a transformation because it amounts to compu-
ting an action description of the form ¬ϕ B⊥ expressing
when the action does not satisfy its precondition.
Of course, if a language allows for arbitrary nesting of

an operator then it trivially supports a transformation. For
example, NPDDL allows to express Choice of α1 and α2
via α1∪α2. In other cases, determining the complexity of
a transformation seems to be not much easier than deter-
mining the succinctness of the language enriched with the
corresponding operator.

Proposition 31. The following transformations are
polynomial-time, in all cases for both the tree and circuit
representations :

— Choice for NPDDL, NPDDLnot and NPDDLseq ;
— Sequence for NPDDLseq ;
— Negation for and NPDDLnot.

Proposition 32. If NP 6⊆ P/poly then NSTRIPS,
T-NPDDL, C-NPDDL, T-NPDDLnot and C-NPDDLnot
do not support polynomial-size Sequence.

Proof. Consider the action γsat
n from the proof of Pro-

position 28. Each of its subactions which are connec-
ted via the sequence operator (these are

dn
i=1(+xi ∪−xi),

(ψnB+psat)u(¬ψnB−psat) and
dn

i=1−xi) is a NSTRIPS
(and therefore NPDDL, NPDDLnot) action. Thus the proof
of Proposition 28 can be reused to show that ifNP 6⊆P/poly
then Sequence cannot be polynomial-size for NSTRIPS,
NPDDL, nor NPDDLnot. �

Proposition 33. If coNP 6⊆ NP/poly then Negation
is not polynomial-size for T-NPDDL, C-NPDDL, nor
T-NPDDLseq.

Proof. Recall for αsat
n from Lemma 20 that s(ϕ) ∈ αsat

n (/0)
holds if and only if ϕ is satisfiable. Now suppose that
Negation is polynomial-size in T-NPDDL, C-NPDDL, or
T-NPDDLseq. Then there exists a polynomial-sized equi-
valent f (αsat

n) of the negation of αsat
n . Thus s(ϕ) ∈ f (αsat

n)
holds if and only if ϕ is unsatisfiable, and so there is a no-
nuniform NP-algorithm for a coNP-complete problem.�

The following results show that it is in general more
efficient to represent the precondition of actions implicitly
in the description rather than as a separate formula.

Proposition 34. If NP 6⊆ P/poly then Ex-Prec is
not polynomial-size for NSTRIPS, nor for NPDDL,
NPDDLnot, NPDDLseq under neither the tree nor the cir-
cuit representation.

Proof. Consider the NSTRIPS action over Xn ∪Pn (as in
Notation 16) : ξn :=

d
pi

(
piB

(
(
⋃

x∈γi
+x)∪(

⋃
¬x∈γi
−x)

))

NSTRIPS

NPDDL

NPDDLseq NPDDLnot

×

×
?

×

?

Figure 1 – Succinctness results. An arc from L1 to L2 de-
notes that L1 is a sublanguage of L2. A crossed out arc from
L1 to L2 means that there is no polynomial-size translation
from L1 into L2. These relations hold for both tree and cir-
cuit representations. Dotted arcs denote open questions (see
text).

and observe that that ξn is applicable in s(ϕ) if and only
if ϕ is satisfiable. If there was a polynomial-size NNF re-
presentation of the precondition ψn of ξn, we could check
ϕ for satisfiability by checking whether s(ϕ) |= ψn, and
thus we would obtain a non-uniform polynomial-time algo-
rithm for 3-SAT. To see the claim for the other languages,
observe that if Ex-Prec was polynomial-size for NPDDL,
NPDDLnot or NPDDLseq, it would be polynomial-size for
their sublanguage NSTRIPS (since the representation of
the output does not depend on the language). �

7 Conclusion

We have studied several languages for describing non-
deterministic actions along two criteria : succinctness and
complexity of different decision problems and transforma-
tions natural to automated planning. We have also conside-
red two representations, by trees and by circuits. Our results
are summarized in Table 1 and on Figure 1.
An interesting result is the different complexity of queries

for NPDDLseq with trees or circuits. While it is intuitively
clear that there must be some languages which are strictly
less succinct with trees than with circuits, and languages
with less tractable queries with circuits than with trees, this
gives a concrete example of this phenomenon. Finally, it
is interesting that the complexity of the three queries is
the same for tree-represented NPDDL with or without se-
quence. Since the language is strictly more succinct with
sequence, T-NPDDLseq seems to be a strictly more inter-
esting language than T-NPDDL.

We leave some problems open for transformations (see
Table 1) and succinctness. For succinctness, a dotted arc
from L1 to L2 on Figure 1 means that the existence of a
polynomial-size translation from L1 to L2 is open ; for all
these arcs we conjecture that there is actually none.
It would also be interesting to determine the complexity

of other queries and transformations. Queries obviously

useful to planning are to count and enumerate successors,
generate a successor of a given state uniformly at random
(as needed in Monte-Carlo approaches), to determine whe-
ther an action is deterministic, and whether all executions of
a given action sequence are free of dead-ends. As concerns
transformations, the complexity of combining two actions
via logical conjunction ∧ does not seem so easy to deter-
mine. Another interesting transformation, in particular for
regression approaches to planning, is the computation of
the “reverse” action ᾱ of α with s′ ∈ ᾱ(s)⇔ s ∈ α(s′).
Our main perspective is a more systematic study, for

languages constructed using combinations of features like
the sequence operator, modalities, Kleene star, etc. A very
expressive language to consider is DL-PPA [10]. Another
perspective is to consider languages for stochastic actions,
and for actions with observations (and hence queries on
belief states rather than states). The ultimate goal is to draw
clear pictures of what language to choose depending on the
queries which are used by, e.g., a planning algorithm or a
simulator.

Acknowledgements

This work has been supported by the French National Re-
search Agency (ANR) through project PING/ACK (ANR-
18-CE40-0011).

Références

[1] Bäckström, Christer: Expressive Equivalence of Plan-
ning Formalisms. Artificial Intelligence, 76(1-2) :17–
34, 1995.

[2] Bäckström, Christer et Peter Jonsson: Algorithms and
Limits for Compact Plan Representations. Journal of
Artificial Intelligence Research, 44 :141–177, 2012.

[3] Benthem, Johan van, Jan van Eijck, Malvin Gattinger
et Kaile Su: Symbolic Model Checking for Dynamic
Epistemic Logic — S5 and Beyond. Journal of Logic
and Computation, 28(2) :367––402, 2018.

[4] Bertoli, Piergiorgio, Alessandro Cimatti, Ugo Dal
Lago et Marco Pistore: Extending PDDL to nonde-
terminism, limited sensing and iterative conditional
plans. Dans Proceedings of ICAPS 2003 Workshop
on PDDL, 2003.

[5] Darwiche, Adnan et Pierre Marquis: A knowledge
compilation map. Journal of Artificial Intelligence
Research, 17 :229–264, 2002.

[6] Fikes, Richard E et Nils J Nilsson: STRIPS : A new
approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3-4) :189–
208, 1971.

[7] Geffner, Hector et Blai Bonet: A Concise Introduc-
tion to Models and Methods for Automated Planning.
Morgan & Claypool Publishers, 2013.

Language Is-Succ Is-Applic Entails Choice Sequence Negation Ex-Prec
NSTRIPS NP-c NP-c coNP-c ? ◦ ? ◦
T-NPDDL, C-NPDDL NP-c NP-c coNP-c X ◦ ◦ ◦
T-NPDDLseq NP-c NP-c coNP-c X X ◦ ◦
C-NPDDLseq PSPACE-c PSPACE-c PSPACE-c X X ? ◦
T-NPDDLnot, C-NPDDLnot PSPACE-c PSPACE-c PSPACE-c X ◦ X ◦

Table 1 – Complexity results for queries and transformations. “X” means that the transformation can be done in time
polynomial in the size of the input. “ ?” means that the question is open. ◦ means that under some complexity-theoretic
assumption (see formal statements) the size of the result of the transformation is in general not polynomial in the size of
the input.

[8] Geffner, Tomas et Hector Geffner: Compact Policies
for Fully Observable Non-Deterministic Planning as
SAT. Dans Proceedings of the Twenty-Eighth Interna-
tional Conference on Automated Planning and Sche-
duling (ICAPS 2018), pages 88–96, 2018.

[9] Hastad, John: Almost optimal lower bounds for small
depth circuits. Dans Proceedings of the eighteenth an-
nual ACM symposium on Theory of computing, pages
6–20, 1986.

[10] Herzig, Andreas, FrédéricMaris et Julien Vianey:Dy-
namic logic of parallel propositional assignments and
its applications to planning. Dans Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence (IJCAI 2019), pages 5576–5582,
2019.

[11] Hoey, Jesse, Robert St Aubin et Craig Boutilier:
SPUDD : stochastic planning using decision dia-
grams. Dans Proceedings of Uncertainty in Artifi-
cial Intelligence (UAI). Stockholm, Sweden. Page (s),
1999.

[12] Lipovetzky, Nir et Hector Geffner: Width and Seria-
lization of Classical Planning Problems. Dans ECAI,
tome 242 de Frontiers in Artificial Intelligence and
Applications, pages 540–545. IOS Press, 2012.

[13] McDermott, Drew: PDDL–the planning domain de-
finition language. Rapport technique CVC TR-
98-003/DCS TR-1165, Yale Center for Compu-
tational Vision and Control, 1998. Available
at : www.cs.yale.edu/homes/dvm (consulted on
2020/03/16).

[14] Muise, Christian J., Sheila A. McIlraith et Vaishak
Belle: Non-Deterministic Planning With Conditional
Effects. Dans Proceedings of the Twenty-Fourth In-
ternational Conference on Automated Planning and
Scheduling (ICAPS 2014), pages 370––374. AAAI
Press, 2014.

[15] Muller, David E. et Franco P. Preparata: Bounds to
complexities of networks for sorting and for switching.
Journal of the ACM (JACM), 22(2) :195–201, 1975.

[16] Nebel, Bernhard: On the compilability and expressive
power of propositional planning formalisms. Journal
ofArtificial IntelligenceResearch, 12 :271–315, 2000.

[17] Palacios, Héctor et Hector Geffner: Compiling Uncer-
tainty Away in Conformant Planning Problems with
Bounded Width. Journal of Artificiall Intelligence Re-
search, 35 :623–675, 2009.

[18] Rintanen, Jussi: Expressive Equivalence of Forma-
lisms for Planning with Sensing. Dans Proceedings
of the Thirteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2003), pages
185–194. AAAI Press, 2003.

[19] Rintanen, Jussi: Complexity of Planning with Par-
tial Observability. Dans Proceedings of the Four-
teenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2004), pages 345–354.
AAAI Press, 2004.

[20] Scheck, Sergej, Alexandre Niveau et Bruno Zanuttini:
Knowledge Compilation for Nondeterministic Action
Languages. Dans Proceedings of the International
Conference on Automated Planning and Scheduling,
tome 31, pages 308–316, 2021.

[21] Speck,David,DavidBorukhson,RobertMattmüller et
Bernhard Nebel:On the Compilability and Expressive
Power of State-Dependent Action Costs. DansProcee-
dings of the Thirty-First International Conference on
Automated Planning and Scheduling (ICAPS 2021),
pages 358–366. AAAI Press, 2021.

[22] Speck, David, Florian Geißer et Robert Mattmüller:
Symbolic Planning with Edge-Valued Multi-Valued
Decision Diagrams. Dans Proceedings of the Twenty-
Eighth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2018), pages 250–258.
AAAI Press, 2018.

[23] Thiébaux, Sylvie, Joerg Hoffmann et Bernhard Nebel:
In defense of PDDL axioms. Artificial Intelligence,
168 :38–69, 2005.

[24] To, Son Thanh, Tran Cao Son et Enrico Pontelli: A
generic approach to planning in the presence of in-
complete information : Theory and implementation.
Artificial Intelligence, 227 :1–51, 2015.

