
HAL Id: hal-03249121
https://hal.archives-ouvertes.fr/hal-03249121

Submitted on 3 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explicit Representations of Persistency for Propositional
Action Theories

Sergej Scheck, Alexandre Niveau, Bruno Zanuttini

To cite this version:
Sergej Scheck, Alexandre Niveau, Bruno Zanuttini. Explicit Representations of Persistency for Propo-
sitional Action Theories. Journées Francophones Francophones Planification, Décision et Apprentis-
sage, Jun 2021, Bordeaux, France. �hal-03249121�

https://hal.archives-ouvertes.fr/hal-03249121
https://hal.archives-ouvertes.fr

Explicit Representations of Persistency for Propositional Action Theories

Sergej Scheck1 Alexandre Niveau1 Bruno Zanuttini1

1 Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

sergej.scheck,alexandre.niveau,bruno.zanuttini@unicaen.fr

Résumé
Nous envisageons d’enrichir la représentation des actions
en logique propositionnelle par des opérateurs syntaxiques
pour représenter la persistance des variables. Ceci est mo-
tivé par le fait que le problème du cadre n’est pas résolu de
manière satisfaisante par les langages propositionnels, tels
que les diagrammes de décision binaires ou DNF. Nous in-
troduisons deux de ces opérateurs, permettant de représen-
ter différents types de persistance, et considérons les lan-
gages obtenus à partir de la logique propositionnelle en
les ajoutant à n’importe quel niveau d’imbrication. Nous
étudions les langages résultantes du point de vue de leur
concision relative et de la complexité de la décision de suc-
cesseur. Nous montrons une image intéressante de divers
résultats de complexité.

Mots Clef
Planification, compilation de connaissances, théories
d’actions, persistance, problème du cadre, circonscription

Abstract
We consider enriching the representation of actions in
propositional logic by syntactic operators for represent-
ing the persistency of variables. This is motivated by the
fact that the frame problem is not satisfactorily solved by
propositional languages, such as binary decision diagrams
or DNF. We introduce two such operators, allowing to rep-
resent different kinds of persistency, and consider the lan-
guages obtained from propositional logic by adding them
at any level of nesting. We study the resulting languages
from the point of view of their relative succinctness and the
complexity of deciding successorship. We show an inter-
esting picture of diverse complexity results.

Keywords
Planning, knowledge compilation, action theories, persis-
tency, frame problem, circumscription

1 Introduction
In automated planning, a central aspect of the description
of problems is the formal representation of actions. Such
representations are needed for specifying the available ac-
tions, and for the planners to operate on them while com-
puting a plan. PDDL [15] is a standard language for this.

More generally, the formal representation of actions is cen-
tral to reasoning about actions, programs, and change us-
ing logic. Frameworks for this include proposals as diverse
as the Situation Calculus [18], the Event Calculus [13],
PDL [9], DL-PA [3], and many others.
We view such languages as either imperative or declara-
tive. Declarative languages allow one to specify the prop-
erties of situations, actions, events, while imperative lan-
guages concentrate on how the effects are brought about.
In this view, the Situation and Event Calculi are declara-
tive, as well as PDL, while PDDL and DL-PA are im-
perative.
On the other hand, a well-known question when represent-
ing action and change is how to succinctly specify the non-
effects of actions, that is, to ensure that the specification
precludes fluents to change value while this is not intended.
This is known as the frame problem. While imperative lan-
guages naturally come with a solution to the frame prob-
lem, because operational semantics literally transform a
situation into another one, the frame problem is crucial in
declarative languages, and it has been thoroughly studied,
in particular for the Situation Calculus [18].
We are interested here in the frame problem for actions
specified in the simple language of propositional action
theories, that is, as Boolean formulas describing the pos-
sible combinations of values for fluents before and after
the action is taken. Though this language is very simple,
it is indeed used in automated planning, because it makes
operations on sets of states (aka belief states) conceptually
simple [6, 5, 20].
We consider action theories represented in Negation Nor-
mal Form (NNF), which encompasses representations usu-
ally used like ordered binary decision diagrams or formulas
in disjunctive normal form. Such theories are adequate for
representing (purely) nondeterministic actions, which lie at
the core of fully observable nondeterministic planning and
conformant planning [19, 1, 10, 16, 20, 11]. Our contribu-
tion is to propose two different operators for representing
the persistency of fluents, and to consider the language of
NNF actions theories as enriched by one or the other. The
originality of this contribution lies in the facts that (i) the
language is enriched with an operator, which, we argue,
allows one to specify the persistency of variables more nat-
urally and succinctly than expressions in the plain underly-

ing logic (like successor-state axioms for the Situation Cal-
culus), and (ii) we allow the operators to occur anywhere
in the formula, including nested occurrences, which again
facilitates the description of actions.
Our operators are one whose interpretation is dependent on
the syntax of the action in its scope, and one whose in-
terpretation depends only on its semantics (as a relation
between the states before and after the action). The “se-
mantic” one corresponds to interpreting the action in its
scope under circumscription [14], here used as a semantics
of minimal change through the action.
We consider the resulting extensions of the language of
NNF action theories in the formal framework of the knowl-
edge compilation map [7]. This framework deals with
the study of formal languages under the point of view of
queries (how efficient is it to answer various queries de-
pending on the language?), transformations (how efficient
is it to transform or combine different representations in
a given language?), and succinctness (how concise is it
to represent knowledge in each language?). We focus on
queries related to automated planning (deciding whether
the action can lead from a state to another one, whether it
is applicable at some state) and on succinctness issues.
Naturally, there is a tradeoff between tractability of queries
and succinctness of the languages. We give a complete pic-
ture for the languages which we consider. Precisely, we
show that the syntactic operator can be added to NNF ac-
tion theories without changing complexity of queries nor
succinctness, since it can be compiled away in polyno-
mial time; this shows that actions can be specified in the
richer language without harming further calculations. On
the other hand, we show that the semantic operator yields
a more succinct language when allowed only at the root
of expressions, and even more succinct when allowed ev-
erywhere, but that the complexity of answering queries in-
creases accordingly.

2 Preliminaries
We consider a countable set of propositional state variables
P = {pi | i ∈ N}. Let P ⊂ P be a finite set of state vari-
ables; a subset of P is called a P -state, or simply a state.
The intended interpretation of a state s ∈ 2P is the assign-
ment to P in which all variables in s are true, and all vari-
ables in P \ s are false. For instance, for P = {p1, p2, p3},
s = {p1, p3} denotes the state in which p1, p3 are true and
p2 is false. We write V(ϕ) for the set of variables occuring
in an expression ϕ; note that expressions may involve both
variables in P and variables not in P, so in general we do
not have V(ϕ) ⊆ P.

Actions We consider (purely) nondeterministic actions,
i.e., actions with which a single state may have several suc-
cessors.

Definition 1. Let P ⊂ P be a finite set of variables. A
P -action is a mapping a from 2P to 2(2

P). The states in
a(s) are called a-successors of s.

Note that a(s) is defined for all states s. We will consider
a to be applicable in s if and only if a(s) 6= ∅ holds.

Definition 2. An action language is an ordered pair 〈L, I〉,
where L is a set of expressions and I is a partial function
on L × 2P such that, when defined on α ∈ L and P ⊂ P,
I(α, P) is a P -action.

We call the expressions in L action descriptions, and call
I the interpretation function of the language. Observe that
those sets P ’s such that I(α, P) is defined are a priori not
related to V(α); α may involve auxiliary variables (not in
P) which are not part of the state descriptions, and dually,
a state may assign variables of P which do not occur in α.
If L, I, P are fixed or clear from the context, then we write
α(s) instead of I(α, P)(s) for the set of all α-successors of
s. In this case we call P the scope of α. In this article we
will consider action descriptions α which are intendedly
constructed to ensure that I(α, P) is defined.

Definition 3. A translation from an action language
〈L1, I1〉 to another language 〈L2, I2〉 is a function f :
L1 × 2P → L2 satisfying I1(α, P) = I2(f(α, P), P) for
all α ∈ L1 and P ⊂ P such that I1(α, P) is defined.

In words, this means that the L1-expression α and the L2-
expression f(α, P) describe the same P -action. Again,
when P is clear from the context, we write f(α) for
f(α, P). The translation f is said to be polynomial-time
if it can be computed in time polynomial in the size of
α and P , and polynomial-size if the size of f(α, P) is
bounded by a fixed polynomial in the size of α and P .
Clearly, a polynomial-time translation is necessarily also
a polynomial-size one, but the converse is not true in gen-
eral.

Logic A Boolean formula ϕ over a set Q of variables is
in negation normal form (NNF) if it is built up from literals
using conjunctions and disjunctions, i.e., if it is generated
by the grammar ϕ ::= q | ¬q | ϕ∧ϕ | ϕ∨ϕ, where q ranges
overQ. Similarly to other expressions,Qmay involve state
variables (in P) and other variables (not in P).
It is important to note that a formula ϕ with V(ϕ) ⊆ Q
for some set of variables Q can be viewed as a formula
over Q (and the truth value of the corresponding Boolean
function does not depend on the variables in Q \ V(ϕ)).
For a Boolean formula ϕ overQ and an assignment t to the
variables in Q, we write t |= ϕ if ϕ evaluates to true under
the assignment t.
For readability, we sometimes use the symbols ↔ and →
in Boolean formulas and still call them NNF formulas.
Indeed, it will always be the case that there are equivalent
NNF formula of the same size, up to a polynomial.
We always use notation s, t, . . . for states, α, β, . . . for ac-
tion descriptions, and ϕ,ψ, . . . for logical formulas.

Action theories We define the action language of (NNF)
action theories, whose extensions we are going to study.
To prepare the definition we associate an auxiliary variable

p′ /∈ P to each variable p ∈ P; p′ denotes the value of p af-
ter the action took place, while p denotes the value before.

Definition 4. An NNFAT action description is a Boolean
formula α in NNF over Pα ∪ {p′ | p ∈ Pα} for some set
of state propositions Pα ⊂ P. The interpretation of an
NNFAT action description α is defined for all P ⊆ P

such that P ⊇ V(α)∩P (that is, when all state propositions
have a value) by

∀s ⊆ P : I(α, P)(s) = {s′ | (s, s′) |= α}

where (s, s′) := s ∪ {p′ | p ∈ s′} is the assignment to
P ∪ {p′ | p ∈ Pα} induced by s, s′. For P 6⊇ V(α) ∩ P,
I(α, P) is not defined. In words, an NNFAT expression
represents the set of all ordered pairs 〈s, s′〉 such that s′

is a successor of s, as a Boolean formula over variables in
P ∪ {p′ | p ∈ P}.
Importantly, NNFAT does not assume persistency of val-
ues, so that if, for example, a variable does not appear at all
in an NNFAT expression, then this means that its value
after the execution of the action can be arbitrary.

Example 5. Let P = {p1, p2, p3}, s1 = ∅, s2 = {p1}, and
α := p1 ∨ (p′1 ∧ p′2), which can be read “when p1 is false
before the action is taken, both p1 and p2 become true after
the action, and when p1 is true anything can occur”. Then
α(s1) = {{p1, p2}, {p1, p2, p3}}, and α(s2) = 2P .

Circuit representation Since we study the succinctness
of languages, it is crucial to define the size of action de-
scriptions. For this we use the same setting as typically
used in knowledge compilation studies about propositional
logic [7], and assume that all action descriptions α are rep-
resented by the directed acyclic graph, or circuit, obtained
from the syntactic tree of α by iteratively identifying the
roots of two isomorphic subexpressions to each other, un-
til no more reduction is possible (like for binary decision
diagrams [4]). Clearly, for all expressions α, the circuit as-
sociated to α in this manner is unique, and it can be com-
puted in polynomial time from the plain expression or from
a nonreduced circuit.

3 Frame operators
Our proposal is to enrich NNFAT with operators for ex-
pressing persistency of variable values. Operators in ac-
tion languages are used to construct new action descrip-
tions from existing ones, and they can be roughly divided
into two types: the interpretation of a syntactic operator
depends on its argument action descriptions, while that of
a semantic operator depends on the actions but not on their
description.
It is important to recall that NNF is a complete language
for propositional logic and hence, that NNFAT is able
to express any action. As a consequence, by enriching
NNFAT we mean providing languages in which it is more
convenient to express actions, as we will illustrate, but
there is no action which those enriched languages can en-
code, that NNFAT cannot encode itself.

Semantic frame operator The semantic frame operator
which we study builds on circumscription [14], which is a
nonmonotonic semantics for formulas enforcing a form of
closed-world assumption, and especially by propositional
circumscription [8, 17]. However, by introducing an oper-
ator for this interpretation, we allow circumscription to be
enforced only on some parts of an expression.
Let α be an action description and s be a P -state. For
all partitions {X,V, F} of P , we introduce the operator
CX,V,F so that CX,V,F (α)(s) chooses those α-successors
of s which change variables from X minimally among all
states with the same values over F .
Precisely, we define a state s′ to be preferred to a state s′′

with respect to a state s and to X,V, F , which we write
s′ ≺sX,V,F s′′, if s′ ∩ F = s′′ ∩ F and (s′′∆s) ∩ X ⊂
(s′∆s) ∩ X hold, where ∆ denotes symmetric difference
for sets.1

Definition 6. The action language NNFATC is the lan-
guage 〈LC, IC〉, where the expressions with scope P in
LC are defined by the grammar

α ::= p | p′ | ¬p | ¬p′ | α ∧ α | α ∨ α | CX,V,F (α),

where p ranges over P and 〈X,V, F 〉 over partitions of P ,
and IC is defined as for NNFAT, extended with

I(CX,V,F (α), P)(s)

= {s′ ∈ I(α, P)(s) | @s′′ ∈ I(α, P)(s) : s′′ ≺sX,V,F s′}

Example 7. Let P = {p1, . . . , p5}, X = {p1, p2}, V =
{p3}, and F = {p4, p5}. Let α = (p′1∨p′3)∧(p′2∨p′4)∧(p′5)
and s = ∅. Then {p1, p2, p5} is an α-successor, but not a
CX,V,F (α)-successor, of s, because s′′ = {p2, p3, p5} is
also an α-successor of s with s′′ ∩F = {p5} = s′ ∩F and
(s′′∆s) ∩ X = {p2} ⊂ {p1, p2} = (s′∆s) ∩ X . On the
other hand, s′′ is a CX,V,F (α)-successor of s even though
s′′′ = {p3, p4, p5} changes fewer values over X , since s′′

and s′′′ differ over F and hence are incomparable with each
other.

It can be seen that the CX,V,F operator is convenient in par-
ticular for expressing actions which involve external causes
(to be put in the set F) of changes of values for variables
of interest (set X), in the presence of ramifications (set V).

Example 8. Consider encoding the action of driving from
work to home. A particularly succinct description is

C{home},{at_work},{flat_tire,engine_ok}(
(engine_ok′ ∧ ¬flat_tire′)→ home′) ∧ (home′ ↔ ¬at_work′)

)
Consider s = {engine_ok, at_work}. Minimization of
change over {home} entails that when the causes are not
met (for instance, when engine_ok′ is false), among the
possible successors of s only the ones with ¬home′ are re-
tained, ignoring the ramification at_work′; successors with

1As mnemonics, variables in V may vary; those in F are fixed.

home′ are not retained, reflecting the fact that there is no
“proof” provided by the action that home should change
value. On the other hand, due to their presence in the set
F , all combinations of causes will be retained. Precisely,
the successors of s are {engine_ok, at_work, flat_tire},
{at_work}, {at_work, flat_tire}, and {engine_ok, home}.

Syntactic frame operator We now define a syntactic op-
erator, for representing the notion of persistency of lan-
guages like PDDL, where a variable does not change
value if there is no explicit reason for this. Concretely, we
want an operator F such that {p} is an F(p′∨¬p′)-successor
of s = ∅, but not an F(q′ ∨ ¬q′)-successor for q 6= p, al-
though p′∨¬p′ describes the same action as q′∨¬q′. There-
fore we need to formalize the intuition that some change is
“explicitly mentioned” in an action description.
For this, we refine the notion of successor by considering
the effects which apply in a state, themselves decomposed
into explicit and implicit effects.

Definition 9. An effect (over P ⊆ P) is a quadruple
〈e+, e−, i+, i−〉 such that e+, e−, i+, i− are pairwise dis-
joint subsets of P . The explicit (resp. implicit) part of such
an effect is the pair 〈e+, e−〉 (resp. 〈i+, i−〉).

The positive (e+ ∪ e−) and negative (e− ∪ i−) are similar
to add- and del-lists in STRIPS: 〈e+, e−, i+, i−〉 provokes
a transition from a state s to s′ = (s′∪e+∪i+)\(e−∪i−).
We now define effects for NNFAT action descriptions.
For combinations of effects via∧, let ε1 = 〈e+1 , e

−
1 , i

+
1 , i
−
1 〉

and ε2 = 〈e+2 , e
−
2 , i

+
2 , i
−
2 〉. If e+1 ∪ i

+
1 = e+2 ∪ i

+
2 holds

then we write ε1 ≈ ε2 and set ε1 + ε2 := 〈e+1 ∪ e
+
2 , e
−
1 ∪

e−2 , i
+
1 ∩ i

−
1 , i

+
2 ∩ i

−
2 〉. Intuitively, ε1 ≈ ε2 means that

they provoke exactly the same transitions, but possibly with
different explicit/implicit changes, and ε1 + ε2 is the effect
which makes explicit any change which is explicit in one
of them.

Definition 10. Let α be an NNFAT action description
and s be a state. Then the set of effects of α in s, written
E(α, s), is defined inductively by

E(p, s) = {〈∅, ∅, A,B〉 | A,B ⊆ P} for s |= p,
E(p, s) = ∅ for s 6|= p;
and dually for E(¬p, s)

E(p′, s) =
{〈∅, ∅, A,B〉 | A,B ⊆ P \ {p}}
∪{〈{p}, ∅, A,B〉 | A,B ⊆ P \ {p}} for s |= p,

E(p′, s) = {〈{p}, ∅, A,B〉 | A,B ⊆ P \ {p}} for s 6|= p;
and dually for E(¬p′, s)

E(α1 ∧ α2, s)

= {ε1 + ε2 | ε1 ∈ E(α1, s), ε2 ∈ E(α2, s), ε1 ≈ ε2};

E(α1 ∨ α2, s) = E(α1, s) ∪ E(α2, s) ∪ E(α1 ∧ α2, s).

where A,B are always disjoint from each other.

Intuitively, the first case says that the action p is not appli-
cable if s does not satisfy p (second line), and otherwise
imposes no constraint on the successor state, but more-
over does not set any value explicitly: a transition may oc-
cur from, say, {p, q} to {r}, but then the positive effects
A = {r} and negative effects B = {p, q} are considered
to be implicit.
For atomic actions of the form p′, we distinguish two cases.
When s does not already satisfy p, then all effects of p′ ex-
plicitly set p. Constrastingly, when s already satisfies p,
then the action p′ leaves the value unchanged, and we in-
clude both effects with an explicit setting of p (to the same
value) and effects with no setting of p at all (neither im-
plicit nor explicit). Of course, for fixed A,B, those two
effects provoke a transition from s to the same successor
s′. Nevertheless, including the effects which do not set p
at all turns out to be necessary for ∧ to behave as expected
in the extension of NNFAT with the F operator (to be
defined soon).
Finally, it is worth noting that we include the effects of
α1 ∧ α2 in those of α1 ∨ α2. Of course, the transitions of
α1 ∧ α2 are already included in those of α1 and in those
of α2, but not necessarily with the same explicit parts. For
instance, for α1 = p′, α2 = q′, and s = ∅, s′ = {p, q}
is both an α1- and an α2-successor of s, but the “fully”
explicit effect 〈{p, q}, ∅, ∅, ∅〉 is only one of α1 ∧ α2.
With this in hand, we can define the framing operator FX .
Intuitively, FX(α) retains only those effects of α which in-
clude no implicit effect on variables of X . As can be seen,
this is equivalent to removing variables of X from the im-
plicit part of all effects. So we define E(FX(α), s) to be

{〈e+, e−, i+ \X, i− \X〉 | 〈e+, e−, i+, i−〉 ∈ E(α, s)}

Definition 11. The action language NNFATF is the lan-
guage 〈LF, IF〉, where the expressions with scope P in LF

are defined by the grammar

α ::= p | p′ | ¬p | ¬p′ | α ∧ α | α ∨ α | FX(α),

where p ranges over P and X over subsets of P , and IF is
defined for all α, s, IF(α, P)(s) is defined to be

{(s ∪ e+ ∪ i+) \ (e− ∪ i−) | 〈e+, e−, i+, i−〉 ∈ E(α, s)}

Example 12. Consider the action of leaving one’s bike in a
garage for them to repair exactly one wheel, but not know-
ing which one in advance.2 The action may have two ef-
fects: making the front wheel or the back wheel ok (in both
cases not affecting the other). However, in the process of
repairing the back wheel, it might occur that the gear is
changed. Additionally, in no case would the brakes be af-
fected. Such an action could be encoded by

Fbrakes

(
Ff_wheel_ok(b_wheel_ok′)∨Fb_wheel_ok,gear(f_wheel_ok′)

)
2E.g., knowing only that they are not aligned which each other.

Importantly, in general, pushing all occurrences of F to the
root of the expression changes its interpretation. For in-
stance, in Example 12, this would yield the expression

Fbrakes,f_wheel_ok,b_wheel_ok,gear

(
b_wheel_ok′∨ f_wheel_ok′

)
according to which the gear can never change value.
Another important observation is that FX is not a special
case of CX,V,F . It might seem that FX is nothing more
than CX,∅,P\X . However, taking P = {p}, α = p′ ∨
¬p′, and s = ∅, it can be seen that both ∅ and {p} are
FX(α)-successors of s, while only ∅ is a CX,∅,P\X(α)-
successor. Indeed, FX(α) takes into account the fact that
both alternatives are explicitly mentioned in the formula,
while CX,∅,P\X(α) considers only the semantics of α and
hence, is equivalent to CX,∅,P\X(>).

Restriction on circuits In addition to NNFATC and
NNFATF, we will also study their natural restrictions
where the operator CX,V,F or FX , respectively, occurs
only at the root of expressions. Namely, NNFATC is
NNFAT augmented only with expressions of the form
CX,V,F (α), where α is an NNFAT action description.
We denote by NNFATrC the resulting language. Simi-
larly, we define the restricted language NNFATrF. Ob-
serve that PDDL, for instance, can be seen as a language
without framing, together with an (implicit) operator FP at
the root of all expressions.

4 Compiling the Syntactic Operator
Away

In this section, we show that the syntactic operator FX
can be eliminated from an NNFATF expression to yield
an expression in NNFAT which has the same inter-
pretation and size (up to a polynomial). Moreover, the
elimination can be done in polynomial time. This means
that NNFATF can be used as a convenient language for
describing actions, still the algorithms which manipulate
those descriptions (e.g. planners) need not be extended to
cope with F, since all its occurrences can simply be elimi-
nated in polynomial time and space.
Let us mention that the equivalent result is rather obvious
for plain (tree-like) representations of formulas, but that
we consider here circuit representations, in which a single
subcircuit may occur in an exponential number of paths.
Our procedure essentially amounts to replacing all occur-
rences of F with subformulas similar to successor-state ax-
ioms. Before we show the result, we need two lemmas (the
proofs are by induction on the structure of α).
The first lemma defines an expression Expl(α, p), and
shows that this expression states that if p changes its value
via α, then there is at least one effect which does it ex-
plicitly. For states s, s′ and action description α, write
E(α, s, s′) for the set of effects which lead from s to
s′: E(α, s, s′) := {〈e+, e−, i+, i−〉 ∈ E(α, s) | s′ =
(s ∪ e+ ∪ i+) \ (e− ∪ i−)}.

Lemma 13. Let α be a NNFATF action description with
scope P , s, s′ ⊆ P be two states and p ∈ s∆s′. Then there
is an effect 〈e+, e−, i+, i−〉 ∈ E(α, s, s′) with p ∈ e+e ∪e−e
if and only if (s, s′) |= Expl(α, s), where the NNFAT
expression Expl(α, s) is defined to be

• α for α = p′ or α = ¬p′,

• ⊥ for α = q′ or α = ¬q′ with q 6= p,

• ⊥ for α = q or α = ¬q, for all variables q,

• (Expl(β, p) ∧ γ) ∨ (β ∧ Expl(γ, p)) for α = β ∧ γ,

• Expl(β, p) ∨ Expl(γ, p) for α = β ∨ γ,

•
∧
x∈X∪{p}

(
(x↔ x′) ∨ Expl(β, x)

)
for α = FX(β).

The second lemma states properties of sets of effects.

Lemma 14. Let α be an NNFATF action description
with scope P ⊇ s and ε1, ε2 ∈ E(α, s, s′). Then it holds:

1. If ε1 ≈ ε2 then ε1 + ε2 ∈ E(α, s)

2. There is at least one 〈e+, e−, i+, i−〉 ∈ E(α, s, s′)
such that e+ ∪ i+ = s′ \ s and e− ∪ i− = s \ s′

Proposition 15. NNFATF is translatable into NNFAT
in polynomial time.

Proof. Let α be a NNFATF action description with
scope P . The translation f(α) is obtained by replacing
each node FX(β) (with X ⊆ P) of the circuit of α by
β ∧

∧
p∈X

(
(p↔ p′) ∨ Expl(β, p)

)
and keeping the other

nodes.
The circuit of Expl(β, p) can be computed in polynomial
time (in each step we create a bounded amount of edges
and nodes). Thus f(α) can be computed in polynomial
time, too.
Now we show that f(α) describes the same action as α.
Suppose that f(β) ≡ β and (s, s′) |= f(α) = β ∧∧
p∈X

(
(p ↔ p′) ∨ Expl(β, p)

)
. Then s′ ∈ β(s), and

(s, s′) |= Expl(β, p) for all p ∈ X . Then by lemmas 13
and 14 for every p ∈ (s′∆s) ∩ X there exists an effect
〈e+β,p, e

−
β,p, i

+
β,p, i

−
β,p〉 with p ∈ e+β,p ∪ e

−
β,p which men-

tions only variables from s∆s′ and by lemma 14 the sum
〈e+, e−, i+, i−〉 of these effects is as well in E(β, s, s′)
and (s∆s′) ∩ X ⊆ e+ ∪ e− and thus 〈e+, e−, i+, i−〉 ∈
E(α, s). This implies s′ ∈ (FX(β))(s). Conversely, if s′ ∈
(FX(β))(s) then there exists an effect 〈e+, e−, i+, i−〉 of β
in switnessing this with (s∆s′)∩X ⊆ e+∪e−. Therefore,
by Lemma 13 all Expl(β, p) with p ∈ (s∆s′)∩X from the
definition of f(α) are satisfied by (s, s′), and for the rest
the expression p↔ p′ is satisfied. And β is satisfied by the
inductive assumption. For α = α1 ∧ α2 or α = α1 ∨ α2

we trivially have that f(α) describes the same action as α
if the claim was proven for α1 and α2.

5 Complexity of queries
We now turn to studying the complexity of queries to ex-
pressions. We concentrate on two natural queries for plan-
ning: checking the existence of a transition, and deciding
applicability of an action in a state. These queries arguably
are at the basis of most other reasonable queries.
Let 〈L, I〉 be a fixed action language, and let α denote an
expression in L, P ⊆ P denote a set of variables such that
I(α, P) is defined, and s, s′ denote two P -states.

Definition 16. The decision problem SUCC takes as input
α, P, s, s′, and asks whether s′ ∈ α(s).

Definition 17. The decision problem APPLIC takes as in-
put α, P, s, and asks whether α(s) 6= ∅.

SUCC for NNFAT amounts to model-checking of an
NNF formula, and for NNFATF the complexity follows
from Proposition 15.

Proposition 18. SUCC is in P for NNFAT and
NNFATF.

To prepare further results we introduce a notation.

Notation 19. Let n ∈ N and Xn = {x1, . . . , xn} be a set
of variables. Observe that there are a cubic number Nn of
clauses of length 3 over Xn. We fix an arbitrary enumer-
ation γ1, γ2, . . . , γNn

of all these clauses, and we define
Pn ⊂ P to be the set of state variables {p1, p2, . . . , pNn

}.
Write ` ∈ γi if the literal ` occurs in the clause γi.
Then to any 3-CNF formula ϕ we associate the Pn-state
s(ϕ) = {pi | i ∈ {1, . . . , Nn}, γi ∈ ϕ}, and dually, to any
Pn-state s, we associate the 3-CNF formula overXn, writ-
ten ϕ(s), which contains exactly those clauses γi for which
pi ∈ s holds.We set ψn :=

∧Nn

i=1(¬pi∨
∨
`∈γi `). In words,

ψn is satisfied by an assignment t to Pn ∪ {x1, . . . , xn}
if and only if the 3-CNF over {x1, . . . , xn} encoded by
t ∩ Pn, is satisfied by the assignment to {x1, . . . , xn} en-
coded by t ∩ {x1, . . . , xn}.

Example 20. Consider an enumeration of all clauses over
X2 = {x1, x2}which starts with γ1 = (x1∨x1∨x2), γ2 =
(x1∨x1∨¬x2), γ3 = (x1∨¬x1∨x2), . . .Then ϕ = (x1∨
x1∨x2)∧ (x1∨¬x1∨x2) is encoded by s(ϕ) = {p1, p3}.

Proposition 21. SUCC is coNP-complete for
NNFATrC.

Proof. For a formula ψ over the variables {qi | j ∈ J},
write ψ′ for the formula obtained by replacing all variables
qj by q′j . Consider the (polynomial-sized) NNFATrC ac-
tion description with scope Pn := Xn ∪ {p1, . . . , pNn} as
in Notation 19:

αn := CPn,∅,∅
(
ψ′n ∨

∧
1≤i≤Nn

p′i
)

Let ϕ be a 3-CNF overXn which is not satisfied by the as-
signment “∀i : xi = >”. We claim that ϕ is unsatisfiable if
and only if s(ϕ)∪Xn is an αn-successor of s(ϕ). Indeed, if

ϕ is satisfiable then by assumption a satisfying assignment
(t (Xn) contains at least one variable set to ⊥. Then by
definition of CPn,∅,∅ the state s(ϕ)∪Xn can’t be a succes-
sor of s(ϕ) because s(ϕ) ∪ t changes fewer variables from
Pn. Conversely, if s(ϕ) ∪ Xn is an αn-successor of s(ϕ)
then the only subset t ⊆ Xn with t ∪ s(ϕ) ∈ αn(s(ϕ)) is
t = Xn, which is by a assumption not a satisfying assign-
ment. Therefore SUCC is coNP-hard. For membership:
s′ /∈ CX,V,F (α)(s) can be justified in polynomial time by
either showing that s′ /∈ α(s) or that there exists s′′ ∈ α(s)
with (s′′∆s)∩X ((s′∆s)∩X and s′∩F = s′′∩F (both
justifications can be checked in polynomial time since α is
in NNFAT).

Proposition 22. SUCC is PSPACE-complete for
NNFATC.

Proof. We modify Notation 19 by introducing for every
variable xj two variables qj , rj and write qj ∈ γi if xj ∈
γi, and rj ∈ γi if ¬xj ∈ γi. We set Qn := {qj , rj | 1 ≤
j ≤ n}. Sn := Qn ∪ {p1, . . . , pNn}. We obtain βnn+1

by replacing all xj in ψn by q′j and all ¬xj by r′j and then
define recursively

βni := C{qi,ri},∅,Sn\{qi,ri}
(
(qi∧ri)∨(qi∧βni+1)∨(ri∧βni+1)

)
Let Φ := ∀x1 : ∃x2 : . . . : ∀xn : ϕ, which is equivalent
to ∀x1 : ¬(∀x2 : ¬(. . .¬(∀xn : ϕ) . . .), be a quantified
Boolean formula with a 3-CNF ϕ. Deciding the validity
of such formulas is obviously PSPACE-complete. We
claim that Φ is true if and only if s(ϕ) ∪Qn ∈ βn1 (s(ϕ)).
Indeed, first observe that for all i and all states s ⊆ Sn \
{qi, ri}, t ⊆ {p1, . . . , pNn}: s ∪ {qi, ri} ∈ βni (t) ⇔ s ∪
{qi}, s∪{ri} /∈ βni+1(t). We set Vi := {qj , rj | i ≤ j ≤ n}
and Wi := {qi, ri} and it follows with t := s(ϕ)

s(ϕ) ∪Qn ∈ βn1 (s(ϕ))

⇔s(ϕ) ∪ V2 ∪ {q1}, s(ϕ) ∪ V2 ∪ {r1} /∈ βn2 (s(ϕ))

⇔∀z1 ∈W1 : ¬(s(ϕ) ∪ V2 ∪ {z1} ∈ βn2 (s(ϕ)))

. . .

⇔∀z1 ∈W1 : ¬
(
∀z2 ∈W2 : ¬(∀z3 ∈W3 : ¬ . . .

(s(ϕ) ∪ {z1, . . . , zn} ∈ βnn+1(s(ϕ))))
)

s(ϕ)∪{z1, . . . , zn} ∈ βnn+1(s(ϕ)) in the last line is equiv-
alent to ϕ being true under the assignment defined by xi :=
(zi = qi). We have proven the claim and thus PSPACE-
hardness of SUCC. For membership: SUCC can be reduced
to deciding the truth of a fully quantified boolean formula
(because s′ ∈ CX,V,F (α)(s) ⇔ ∀s′′ : ((s′′∆s) ∩ X (
(s′∆s) ∩X ∧ s′′ ∩ F = s′ ∩ F ⇒ s′′ /∈ α(s))).

Proposition 23. APPLIC is NP-complete for NNFAT,
Σp

2-complete for NNFATrC and PSPACE-complete
for NNFATC.

Proof. Satisfiability of a 3-CNF ϕ can be reduced to appli-
cability in NNFAT by replacing each x by x′ and check-
ing whether the obtained action description describes an
action which is applicable in s = ∅.

For Σp
2-hardness in NNFATrC: let x̄ = (x1, . . . , xn),

ȳ = (y1, . . . , ym), Xn = {x1, . . . , xn}, Ym =
{y1, . . . , ym}. A quantified boolean formula ∃ȳ∀x̄ϕ(x̄, ȳ)
is true if and only if the S := {q} ∪ Xn ∪ Ym action
CXn∪{q},∅,Ym

((¬q′ ∧ ¬ϕ(x̄′, ȳ′)) ∨ q′) ∧ q′ is applicable
in ∅, because it is applicable only if q can be set to true
meaning that ¬ϕ(x̄′, ȳ′) is unsatisfiable by any assignment
to x̄′. For membership: if we have an oracle for SUCC then
we can justify applicability in polynomial time by giving a
successor and checking successorship with the oracle.
For PSPACE-hardness in NNFATC: s′ ∈ α(s) if and
only if α ∧

∧
p∈s′ p

′ ∧
∧
p/∈s′ ¬p′ is applicable in s. For

membership: to check for applicability of α in s we need
to check for all s′ whether s′ ∈ α(s).

6 Succinctness
Recall that all languages are fully expressive, so we use the
following definition [7].

Definition 24. A language L1 is at least as succinct as L2

if there exists a polynomial-size translation from L2 into
L1.

Our separation results rely on yet unproven assumptions
on nonuniform complexity classes. Recall that P/poly
(resp. coNP/poly) is the class of all decision prob-
lems such that for all n ∈ N, there is a polytime al-
gorithm (resp. a nondeterministic polytime algorithm for
the complement) which decides the problem for all in-
puts of size n [2]. The assumptions coNP 6⊆ P/poly
and PSPACE 6⊆ coNP/poly which we use are stan-
dard ones; in particular, coNP ⊆ P/poly would imply
a collapse of the polynomial hierarchy at the second level
(Karp-Lipton theorem), and PSPACE ⊆ coNP/poly
would imply a collapse at the third level[21].
We first observe that since NNFAT is translatable into
NNFATF via the identity function, and NNFATF is a
superlanguage of NNFAT, so they are equally succinct.

Proposition 25. If coNP 6⊆ P/poly then NNFATrC is
strictly more succinct than NNFAT.

Proof. Recall from the proof of proposition 21 that s(ϕ)∪
Xn is an αn-successor of s(ϕ) if and only if ϕ (assumed
not to be satisfied by assigning > to all variables) is unsat-
isfiable, and that αn depends only on the number n of vari-
ables in ϕ (not on ϕ itself). Now suppose that there exists
a poly-size translation f from NNFATrC into NNFAT.
Then we can check whether ϕ is unsatisfiable by checking
if it is not satisfied by the all-> assignment, and whether
s(ϕ) ∪ Xn is an f(αn)-successor of s(ϕ). This gives a
nonuniform polytime algorithm (Proposition 18) for non-
satisfiability, which is a coNP-complete problem.

The next proposition says that nesting of CX,V,F opera-
tors contributes to succinctness. We omit the proof since
it is very similar to that of Proposition 25 (using Proposi-
tion 22).

Proposition 26. If PSPACE 6⊆ coNP/poly then
NNFATrC is strictly less succinct than NNFATC.

7 Conclusion
We studied extensions of NNF action theories with oper-
ators expressing two different types of persistency of vari-
ables, with the goal of enriching the language. We gave a
picture of the resulting languages à la knowledge compi-
lation map. It turns out that using a frame operator resem-
bling that of PDDL at any level of nesting does not change
time nor space complexity; hence this operator can be used
when specifying actions, then compiled away efficiently so
as to use algorithms designed for (standard) NNF action
theories. The languages resulting for our second opera-
tor (related to the interpretation of formulas under circum-
scription) are more succinct but also have a greater com-
plexity for basic queries.
Our results raise new open knowledge compilation-related
questions. For example, we are interested in comparing
these new languages to already well-known languages like
variants of PDDL or DL-PPA [12] in terms of succinct-
ness. We are also interested in the complexity of queries
other than studied here, e.g. whether all successors of a
state via a given sequential plan satisfy some property. Our
long-term goal is to study action description languages as
defined by allowed operators or constructs, so as to get a
complete picture.

Acknowledgements
This work has been supported by the French National Re-
search Agency (ANR) through project PING/ACK (ANR-
18-CE40-0011).

References
[1] Alexandre Albore, Héctor Palacios, and Hector

Geffner. Compiling uncertainty away in non-
deterministic conformant planning. In Proc.
19th European Conference on Artificial Intelligence
(ECAI 2010), volume 215, pages 465–470, 2010.

[2] Sanjeev Arora and Boaz Barak. Computational com-
plexity: a modern approach. Cambridge University
Press, 2009.

[3] P. Balbiani, A. Herzig, and N. Troquard. Dynamic
logic of propositional assignments: A well-behaved
variant of pdl. In 2013 28th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, pages 143–
152, 2013.

[4] Randal E Bryant. Symbolic boolean manipulation
with ordered binary-decision diagrams. ACM Com-
puting Surveys (CSUR), 24(3):293–318, 1992.

[5] Daniel Bryce, Subbarao Kambhampati, and David E.
Smith. Planning graph heuristics for belief space
search. Journal of Artificial Intelligence Research,
26:35–99, 2006.

[6] Alessandro Cimatti and Marco Roveri. Conformant
planning via symbolic model checking. Journal of
Artificial Intelligence Research, 13:305–338, 2000.

[7] Adnan Darwiche and Pierre Marquis. A knowledge
compilation map. Journal of Artificial Intelligence
Research, 17:229–264, 2002.

[8] Thomas Eiter and Georg Gottlob. Propositional cir-
cumscription and extended closed-world reasoning
are πp2-complete. Theoretical Computer Science,
114(2):231–245, 1993.

[9] Michael J. Fischer and Richard E. Ladner. Proposi-
tional dynamic logic of regular programs. Journal
of Computer and System Sciences, 18(2):194 – 211,
1979.

[10] Hector Geffner and Blai Bonet. A Concise Introduc-
tion to Models and Methods for Automated Planning.
Morgan & Claypool Publishers, 2013.

[11] Tomas Geffner and Hector Geffner. Compact poli-
cies for fully observable non-deterministic planning
as SAT. In Proc. 28th International Conference on
Automated Planning and Scheduling (ICAPS 2018),
pages 88–96, 2018.

[12] Andreas Herzig, Frédéric Maris, and Julien Vianey.
Dynamic logic of parallel propositional assignments
and its applications to planning. In Proc. 28th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI 2019), pages 5576–5582, 2019.

[13] Robert A. Kowalski and Marek J. Sergot. A logic-
based calculus of events. New Gener. Comput.,
4(1):67–95, 1986.

[14] John McCarthy. Circumscription—a form of non-
monotonic reasoning. Artificial intelligence, 13(1-
2):27–39, 1980.

[15] Drew McDermott. PDDL–the planning domain
definition language. Technical Report CVC TR-
98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control, 1998. Available at:
www.cs.yale.edu/homes/dvm (consulted on
2020/03/16).

[16] Christian J. Muise, Sheila A. McIlraith, and Vaishak
Belle. Non-deterministic planning with conditional
effects. In Proc. 24th International Conference on
Automated Planning and Scheduling (ICAPS 2014),
pages 370––374, 2014.

[17] Gustav Nordh. A trichotomy in the complexity of
propositional circumscription. In International Con-
ference on Logic for Programming Artificial Intel-
ligence and Reasoning, pages 257–269. Springer,
2005.

[18] R. Reiter. The frame problem in the situation calcu-
lus: A simple solution (sometimes) and a complete-
ness result for goal regression. In Artificial and Math-
ematical Theory of Computation, 1991.

[19] Jussi Rintanen. Complexity of planning with par-
tial observability. In Proc. 14th International Con-
ference on Automated Planning and Scheduling
(ICAPS 2004), pages 345–354, 2004.

[20] Son Thanh To, Tran Cao Son, and Enrico Pontelli. A
generic approach to planning in the presence of in-
complete information: Theory and implementation.
Artificial Intelligence, 227:1–51, 2015.

[21] Chee K Yap. Some consequences of non-uniform
conditions on uniform classes. Theoretical computer
science, 26(3):287–300, 1983.

