
Knowledge Compilation for Action Languages

Sergej Scheck Alexandre Niveau Bruno Zanuttini

Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

sergej.scheck,alexandre.niveau,bruno.zanuttini@unicaen.fr

Résumé
Nous étudions différents langages permettant de représen-
ter des actions non déterministes pour la planification au-
tomatique, du point de vue de la compilation de connais-
sances. Précisément, nous considérons la question de la
concision des langages (quelle est la taille de la descrip-
tion d’une action dans chaque langage?) et des questions
de complexité (quelle est la complexité algorithmique de
décider si un état est un successeur d’un autre pour une
action décrite dans l’un de ces langages?). Nous étu-
dions une version abstraite et nondéterministe de PDDL,
le langage des théories d’actions en NNF, et DL-PPA, la
logique dynamique des affectations propositionnelles par-
allèles. Nous montrons que ces langages ont une concision
différente, et une complexité de requête différente : DL-
PPA est le plus concis et NNF le moins concis, et décider si
un état est successeur d’un autre est déjà NP-complet pour
PDDL nondéterministe.

Mots Clef
Planification, compilation de connaissances, logique dy-
namique des affectations propositionnelles, planning do-
main definition language, théories d’actions

Abstract
We study different languages for representing nondetermin-
istic actions in automated planning from the point of view
of knowledge compilation. Precisely, we consider suc-
cintness issues (how succinct is the description of an ac-
tion in each language?) and complexity issues (how hard
is it to decide whether a state is a successor of another
one through some action described in one of these lan-
guages?). We study an abstract, nondeterministic version
of PDDL, the language of NNF action theories, and DL-
PPA, the dynamic logic of parallel propositional assign-
ments. We show that these languages have different suc-
cinctness and different complexity of queries: DL-PPA is
the most succinct one and NNF is the least succinct, and
deciding successorship is already NP-complete for nonde-
terministic PDDL.

Keywords
Planning, knowledge compilation, dynamic logic of propo-
sitional assignments, planning domain definition language,
action theories

1 Introduction
In automated planning, a central aspect of the description
of problems is the formal representation of actions. Such
representations are indeed needed for specifying the ac-
tions available to the agent (PDDL [15] is a standard lan-
guage for this), and also for the planners to manipulate
them while searching for a plan.
In this paper, we consider different representation lan-
guages from the point of view of knowledge compilation
[9]. Knowledge compilation is the study of formal lan-
guages under the point of view of queries (how efficient is
it to answer various queries depending on the language?),
transformations (how efficient is it to transform or com-
bine different representations in a given language?), and
succinctness (how concise is it to represent knowledge in
each language?). Most work in knowledge compilation has
been done on representations of Boolean functions, for in-
stance, by Boolean formulas in negation normal form, by
ordered binary decision diagrams, etc. [9].
As far as we know there has been no systematic study of
languages for representing actions per themselves. This is
however an important problem, as planners need to query
action representations again and again while searching for
a plan (for instance, to find out which actions are applicable
at the current node of the search tree), and typically start by
transforming the action specifications into some represen-
tation suited for this. Hence having a clear picture of the
properties of languages is clearly of interest for the devel-
opment of such planners.
However, there have been a few papers studying aspects re-
lated to knowledge compilation for planning. For instance,
Nebel has considered questions very similar to ours [17].
His study uses a rather powerful notion of compilation,
where translations from one formal language to another are
allowed to change the set of variables and the set of ac-
tions.1 This captures compilation schemes where one is in-
terested in preserving the existence of plans and their size.
Contrastingly, we are interested in a strict notion of com-
pilation, where the set of variables and the specification of
initial states and goals are unchanged by the translation,
while each action is translated into one with the same se-
mantics. This is more demanding, but makes translations
applicable in broader settings (for instance, to problems

1Actions are called “operators” there.

where we want to count or enumerate plans). Bäckström
and Jonsson have studied representations of plans with re-
spect to their size and to the complexity of retrieving the
individual actions which they prescribe at each step [3].
This is also related to our work, but with a focus on lan-
guages for representing plans, while we study languages
for representing actions.
We are interested here in (purely) nondeterministic actions,
which lie at the core of fully observable nondeterminis-
tic planning and of conformant planning [19, 1, 12, 16,
20, 13]. We moreover consider propositional domains, in
which states are assignments to a given set of propositions.
The languages which we consider are of different natures:
(grounded) PDDL is a specification language, NNF ac-
tion theories are typically used as an internal representation
by solvers, and DL-PPA is a logic allowing to specify
programs and to reason about them. However, all of them
can be viewed as languages for representing actions (as
nondeterministic mappings from states to states), and their
diversity (allowed constructs, representation of persisting
values) allows us to give a clear picture. Our mid-term goal
is to give a systematic picture of languages arising from all
combinations of allowed constructs among the ones intro-
duced in the literature (like nondeterministic choice, itera-
tion, persistency by default, etc.).
The paper is structured as follows. In Section 2 we give
the necessary background about actions and logic, and in
Section 3 we formally define the action languages which
we will consider. We then give our results: in Section 4
we prove positive results about polynomial-time transla-
tions between the languages, then in Section 5 we study
the complexity of deciding whether a state is a possible
successor of another state given an action description in
one of these languages, and in Section 6 we give negative
results about polynomial translations, which allows us to
determine which languges are strictly more succinct than
others. Finally, we conclude in Section 7.

2 Preliminaries
For any planning problem we consider a fixed finite set
P = {p1, . . . , pn} of propositional variables. A subset of
P is called a P -state, or simply a state. The intended inter-
pretation of a state s ∈ 2P is the assignment to P in which
all variables in s are true, and all variables in P \ s are
false. As an example, for P = {p1, p2, p3}, s = {p1, p3}
denotes the state in which p1 and p3 are true and p2 is false
We write P for {pi | i ∈ N}.

Actions In this article we consider (purely) nondeter-
ministic actions, which map states to sets of states. This
means that a single state may have several successors
through the same action, in contrast with deterministic ac-
tions (which map states to states), and that no relative like-
lihood is encoded between the successors of a state, in con-
trast with stochastic actions (which map states to probabil-
ity distributions over states).

Definition 1 (action). Let P be a finite set of proposi-
tional variables. A nondeterministic P -action is a map-
ping a from 2P to 2(2P). The elements of a(s) are called
a-successors of s.

In the literature, actions are often considered together with
preconditions which have to be satisfied to allow the execu-
tion of the action. However, for the results in this paper it is
not important whether we require the action preconditions
to be written explicitly, so for simplicity we assume them
to be implicit. This means that an action a is applicable to
a state s if and only if there exists at least one a-successor
state s′ of s.

Example 2. Consider the following hunting example. Let

P = {rabbit_in_sight, rabbit_alive, loaded_rifle}.

The action shoot_rabbit can be described as “if
rabbit_alive then: if loaded_rifle and rabbit_in_sight,
then not loaded_rifle and either rabbit_alive and not
rabbit_in_sight or not rabbit_alive and rabbit_in_sight,
otherwise state unchanged”. The action is applicable only
if the rabbit is alive (otherwise it is not sensible to shoot at
him). In this case, if the hunter is ready to shoot (the rifle
is loaded and he can see the rabbit), then he tries to shoot
the rabbit (he might miss the rabbit who hears the shot and
runs away, so the action is nondeterministic), and if he is
not ready to shoot, then nothing happens.
Let s = {rabbit_in_sight, rabbit_alive, loaded_rifle}
be the state where all three variables are
true. Then shoot_rabbit(s) is the set of
states (“successors”) {s′, s′′} with s′ = s \
{rabbit_alive, loaded_rifle} = {rabbit_in_sight}
and s′′ = s \ {rabbit_in_sight, loaded_rifle} =
{rabbit_alive}.

In this article, we are interested in the properties of repre-
sentations of actions in various langugages.

Definition 3 (action language). An action language is an
ordered pair 〈L, I〉, where L is a set of action descriptions
and I is an interpretation function. Action descriptions are
ordered pairs 〈α, P 〉 where α is a formula and P is a fi-
nite subset of P. The interpretation function I maps every
action description 〈α, P 〉 ∈ L to a P -action I(α, P).

Observe that P is a priori not related to the variables of α
(this depends on the language). For instance, variables of P
not mentioned in an NPDDL expression α are assumed
to persist, and a formula may also use variables outside of
P and even outside of P (called auxiliary variables), as in
NNFAT.
If the language 〈L, I〉 and the set P are clear from the con-
text (or we just consider them to be fixed), then we write
α(s) instead of I(α, P)(s) for the set of all α-successors
of s.
In this article, we are mostly interested in translations be-
tween languages.

Definition 4 (translation). Let 〈L1, I1〉 and 〈L2, I2〉 be
two action languages. A function f : L1 → L2 is a
(proper) translation if I1(α, P) = I2(f(α, P), P) holds for
all 〈α, P 〉 ∈ L1.

In words, this means that the L1-action description 〈α, P 〉
and the L2-formula f(α, P) describe the same P -action.
Again, when P is clear from the context, we write f(α)
for f(α, P).
The function f is called a polynomial-time translation if it
can be computed in time polynomial in the size of α and
P . It is called a polynomial-size translation if the size of
f(α, P) is bounded by a fixed polynomial in the size of
α together with the size of P . Clearly, a polynomial-time
translation is necessarily also a polynomial-size one, but a
polynomial-size translation may not be polynomial-time.

Logic A Boolean formula ϕ is said to be in negation
normal form (NNF for short) if it is built up from literals
using conjunctions and disjunctions, i.e., if it is generated
by the grammar

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ

where p ranges over P. We also use the shorthand notation
> for p ∨ ¬p and ⊥ for p ∧ ¬p, for an arbitrary p ∈ P.
For such a formula ϕ, V(ϕ) denotes the set of variables
occuring in ϕ.
The set of formulas in NNF is complete, that is, every
Boolean function can be described by an NNF formula.
It is important to note that a formula ϕ with V(ϕ) ⊆ P
for some set of variables P can be regarded as a formula
over P (and the truth value of the corresponding Boolean
function does not depend on the variables in P \ V(ϕ)).
For a boolean formula ϕ over a set of variables P and a
state s ⊆ P , we write s |= ϕ if ϕ evaluates to > under the
assignment s.

Notation As a general rule, we use variables a, b, . . .
for actions, α, β, . . . for action expressions (in some lan-
guage), and ϕ,ψ, . . . for logical formulas. Since action
descriptions are also formulas in some language, we re-
serve the term “expression” for action descriptions and the
term “formula” for logical formulas occuring in them.

Representations In the whole article we assume the ex-
pressions and formulas of action languages to be “flat”, i.e.,
that the amount of memory space required to store the ex-
pression or formula is its number of symbols (without the
parentheses). This is to be contrasted with representations
of NNF formulas (in particular) in which isomorphic sub-
formulas are assumed to be represented only once, with any
superformula pointing to this shared representation, a rep-
resentation widely used in the literature about knowledge
compilation [9]. We however wish to highlight that all our
results would go through if we assumed such “circuit” (or
“DAG”) representations for formulas (we leave the case of
circuit representations of expressions for future work).

3 Action Languages
In this section we formally define the action languages
which we study later.

Variants of PDDL The first language which we con-
sider is the well-known planning domain description lan-
guage (PDDL). This language is a standardized one used
for specifying actions at the relational level, widely used as
an input for planners, especially in the international plan-
ning competitions [15, 10, 11]. Since we are interested in
nondeterministic actions, we consider a nondeterministic
variant of PDDL inspired by NPDDL [6], and so as to
abstract away from the precise syntax of the specification
language, we consider an idealized version. Finally, we
consider a grounded version of PDDL, namely, a propo-
sitional one. Still we use the name “NPDDL”, since we
use essentially the same constructs.
We first define the syntax of NPDDL.

Definition 5 (NPDDL action descriptions). An
NPDDL action description is an ordered pair 〈α, P 〉,
where α is an expression generated by the grammar

α ::= ε | p | ¬p | α&α | ϕBα | (α | α)

where p ranges over P and ϕ over Boolean formulas in
NNF over P .

Intuitively,

• ε describes the action with no effect (the only succes-
sor of s is s itself),

• p (resp. ¬p) is the action which makes p true (resp.
false),

• & denotes simultaneous execution (with no successor
if the operands are inconsistent together),

• B denotes conditional execution,

• | denotes nondeterministic choice,

and, importantly, variables not explicitly modified by the
action are assumed to keep their value.
We insist that this syntax is an idealization of nondetermin-
istic (grounded) PDDL; for instance, the action which we
write xB

(
y|(¬y& z)

)
would be written

when x (oneof y (and (not y) z))

with the syntax of NPDDL [6].
Action descriptions in NPDDL are interpreted as actions
as follows.

Definition 6 (semantics of NPDDL). The interpreta-
tion function for NPDDL is the function I defined by
I(α, P)(s) = {(s∪e+)\e− | 〈e+, e−〉 ∈M(α, s)}, where
M(α, s) is the set of possible modifications of s caused by
α, defined inductively by

• M(ε, s) = {〈∅, ∅〉},

• M(p, s) = {〈{p}, ∅〉} and M(¬p, s) = {〈∅, {p}〉},

• M(ϕ . α, s) = M(α, s) if s |= ϕ, else {〈∅, ∅〉},

• M(α1 &α2, s) = {〈e+
1 ∪ e

+
2 , e
−
1 ∪ e

−
2 〉 | 〈e

+
1 , e
−
1 〉 ∈

M(α1, s), 〈e+
2 , e
−
2 〉 ∈ M(α2, s), e+

1 ∩ e
−
2 = e−1 ∩

e+
2 = ∅},

• M(α1 |α2, s) = M(α1, s) ∪M(α2, s).

When we want to denote simultaneous execution of all ac-
tion descriptions in a set A, we write &α∈A α. Also note
that the action description p&¬p (for an arbitrary p ∈ P)
defines a nonexecutable action. Hence it can be used as
a subaction for encoding a precondition, and we use ⊥ as
shorthand notation for it.

Example 7 (continued). The following is an NPDDL ac-
tion description for the action shoot_rabbit of Example 2.

(¬rabbit_aliveB⊥)
&

(
(rabbit_alive ∧ rabbit_in_sight ∧ loaded_rifle)
B(¬loaded_rifle

&(¬rabbit_alive | ¬rabbit_in_sight))
)

We are also interested in the language NPDDL as ex-
tended by the sequential execution operator “;”.

Definition 8 (NPDDLseq). The language NPDDLseq
is the language in which action descriptions are generated
by the following grammar:

α ::= ε | p | ¬p | α&α | ϕBα | (α | α) | α;α

and the interpretation function is the same as that of
NPDDL for all constructs, augmented with

(α1;α2)(s) = {s′′ | ∃s′ ∈ α1(s) : s′′ ∈ α2(s′)}

NNF action theories We now define the second lan-
guage which we consider, namely that of (NNF) action
theories. Such representations are typically used by plan-
ners which reason explicitly on sets of states (aka belief
states), since they allow for symbolic operations on belief
states and action descriptions [8, 7, 20]. We consider action
theories represented in NNF, which encompasses repre-
sentations usually used like OBDDs or DNFs.
To prepare the definition we associate a variable p′ ∈ P′
to each variable p ∈ P, where P′ is a disjoint copy of P;
p′ is intended to denote the value of p after the action took
place, while p denotes the value before.

Definition 9 (NNFAT). An NNFAT action description
is an ordered pair 〈α, P 〉 where α is a Boolean formula in
NNF over the set of variables P ∪ {p′ | p ∈ P}. The
interpretation of 〈α, P 〉 is defined by

I(α, P)(s) = {s′ | s ∪ {p′ | p ∈ s′} |= α}

In words, an (NNF) action theory represents the set of all
ordered pairs 〈s, s′〉 such that s′ is a successor of s, as a
Boolean formula over variables in P ∪ {p′ | p ∈ P}.
Importantly, NNFAT does not assume the frame axiom,
so that if, for example, a variable does not appear at all
in an NNFAT action description, then this means that its
value after the execution of the action can be arbitrary. For
instance, the action description 〈x′ ∨ (¬y ∨ z′), {x, y, z}〉
represents an action which either (1) sets x to true and y, z
to any value (nondeterministically), or (2) sets z to true and
x, y to any value, in case y is true in the initial state, and
otherwise sets each variable to any value, or (3) performs
any consistent combination of (1) and (2).
Observe that a conjunct over variables in P in an NNFAT
action description in fact encodes a precondition.

Example 10 (continued). The action shoot_rabbit of Ex-
ample 2 can be written as (we use→ and↔ for readabil-
ity)

rabbit_alive
∧ (loaded_rifle ∧ rabbit_in_sight)
→
((

(¬rabbit_in_sight′ ∧ rabbit_alive′)
∨(rabbit_in_sight′ ∧ ¬rabbit_alive′)

)
∧
(
¬loaded_rifle′

))
∧

(
(rabbit_alive 6↔ ¬rabbit_alive′)
∨(rabbit_in_sight 6↔ rabbit_in_sight′)
∨(loaded_rifle 6↔ loaded_rifle′)

)
→ (loaded_rifle ∧ rabbit_in_sight)

As can be seen, encoding in NNFAT the fact that the val-
ues of variables persist unless stated otherwise, typically
requires subformulas (here the last conjunct) playing the
same role as successor-state axioms in the situation calcu-
lus [18]. This typically requires a lot of space. We will give
a formal meaning to this remark later in the paper (Propo-
sition 30).

Obviously, every action can be represented in this lan-
guage, since the language of NNF formulas is complete
for Boolean functions. We will see later that all the other
languages that we study in this article are at least as suc-
cinct as NNFAT; hence in particular, they are all com-
plete as well.

DL-PPA The last language that we consider in this pa-
per is the dynamic logic of parallel propositional assign-
ments (DL-PPA for short), which has been introduced by
Herzig et al. as an extension of the language DL-PA [14].
DL-PA was initially proposed for reasoning about imper-
ative programs [5]. For instance, deciding whether there
exists a plan from a given initial state to a goal charac-
terized by a Boolean formula ϕ using actions α1, . . . , αk
amounts to deciding whether the initial state satisfies the
DL-PA formula 〈(α1∪. . .∪αk)∗〉ϕ. However, DL-PPA
can also be used as an action language [14].

Definition 11 (DL-PPA action descriptions). A
DL-PPA action description is an ordered pair 〈α, P 〉

where α is an expression generated by the following
grammar:

α ::= p← ϕ | ϕ? | α;α | α ∪ α | α u α | α t α | α∗
ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ

where p ranges over P .

In the literature, action descriptions are typically called
DL-PPA programs, and formulas ϕ as in the definition
are typically called DL-PPA formulas. Intuitively, the
symbols mean the following:

• p← ϕ evaluates ϕ in the current state and assigns the
resulting value to p,

• ϕ? tests whether ϕ is satisfied in the current state and
fails if it is not the case,

• ; denotes sequential execution,

• ∪ denotes (exclusive) nondeterministic choice, that is,
execution of exactly one subaction,

• u denotes parallel execution,

• t denotes nonexclusive nondeterministic choice, that
is, execution of one subaction or of both subactions,

• ∗ denotes looping an arbitrary number of times,

• 〈α〉ϕ denotes the modal construction “there is an exe-
cution of α ending in a state which satisfies ϕ”.

We also use the shorthand notation +p (resp. −p) for
p ← > (resp. p ← ⊥) and [α]ϕ for ¬〈α〉¬ϕ (“all exe-
cutions of α end in a state which satisfies ϕ”). Moreover,
as follows from the semantics which is defined below, >?
denotes an empty action mapping any state to itself, and
(ϕ?;α) ∪ (¬ϕ?;β) denotes the construction “if ϕ then α
else β”.
Also observe that every NNF formula can be rewritten
into an equivalent DL-PPA-formula (without ∧) in linear
time, since using De Morgan’s laws we can always rewrite
ϕ ∧ ψ into the logically equivalent formula ¬(¬ϕ ∨ ¬ψ).
Suppose that we are given the set P . To every formula there
is an associated valuation which is the set of states that are
models of the formula. The interpretations of programs are
ternary relations on the set of states 2P . We denote the
valuation of a formula and the interpretation of a program
by ‖ϕ‖ and ‖α‖ respectively. (s, s′, w) ∈ ‖α‖ means that
there is an execution of α that leads from s to s′ by as-
signing the variables in w. The formulas in DL-PPA are
interpreted as follows, where s, s′, ŝ . . . denote states and
w,w1, ŵ1 . . . denote subsets of P :

Definition 12.

‖p‖ = {s | p ∈ s}
‖>‖ = 2P

‖¬ϕ‖ = 2P \ ‖ϕ‖
‖ϕ1 ∨ ϕ2‖ = ‖ϕ1‖ ∪ ‖ϕ2‖
‖〈α〉ϕ‖ = {s | ∃w ∃s′ : (s, s′, w) ∈ ‖α‖ ∧ s′ ∈ ‖ϕ‖}

The programs are interpreted in the following way:

‖p← ϕ‖ ={(s, s ∪ {p}, {p}) | s ∈ ‖ϕ‖}
∪ {(s, s \ {p}, {p}) | s /∈ ‖ϕ‖}

‖ϕ?‖ ={(s, s, ∅) | s ∈ ‖ϕ‖}
‖α1;α2‖ ={(s, s′, w) | ∃ŵ1 ∃ŵ2 ∃ŝ′ : (s, ŝ, ŵ1) ∈ ‖α1‖

∧ (ŝ, s′, ŵ2) ∈ ‖α2‖ ∧ w = ŵ1 ∪ ŵ2}
‖α1 ∪ α2‖ =‖α1‖ ∪ ‖α2‖
‖α1 u α2‖ ={(s, s′, w) | ∃s′1 ∃s′2 ∃w1 ∃w2 : (s, s′1, w1)

∈ ‖α1‖)} ∧ (s, s′2, w2) ∈ ‖α2‖ ∧ w1 ∩ w2 ∩ s′1
= w1 ∩ w2 ∩ s′2 ∧ w = w1 ∪ w2

∧ s′ = (s \ w) ∪ (s′1 ∩ w1) ∪ (s′2 ∩ w2)
‖α1 t α2‖ =‖α1 ∪ α2 ∪ (α1 u α2)‖

‖α∗‖ =
⋃
k∈N

‖α;α; . . . ;α︸ ︷︷ ︸
k times

‖

When applying DL-PPA to planning tasks we identify
valuations with states and describe actions as programs:
an action α is described by a program α with α(s) = {s′ |
∃w : (s, w, s′) ∈ ‖α‖}.

Finally, we will be interested in the restriction of
DL-PPA obtained when disallowing nonexclusive
choice, the Kleene star, and modalities.

Definition 13 (restricted DL-PPA). The language re-
stricted DL-PPA is the language in which action descrip-
tions 〈α, P 〉 are generated by the following grammar:

α ::= p← ϕ | ϕ? | α;α | α ∪ α | α u α
ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ

where p ranges over P , and whose semantics is the same
as DL-PPA restricted to this language.

Example 14 (continued). The action shoot_rabbit of our
running example 2 can be described as follows in (re-
stricted) DL-PPA:

rabbit_alive?;(
(rabbit_in_sight ∧ loaded_rifle)?;
(−rabbit_alive ∪ −rabbit_in_sight);
−loaded_rifle

)
∪
(
¬rabbit_in_sight ∨ ¬loaded_rifle?

)
Example 15. The following DL-PPA program illustrates
the meaning of the modal operators and of the Kleene star:(

〈shoot_rabbit; shoot_rabbit∗〉¬rabbit_alive?;
shoot_rabbit

)
∪
(
− loaded_rifle

)

This action can be read as follows. If the hunter has a
chance to kill the rabbit (which especially means that in
the current state the rabbit is alive, as ensured by the first
occurrence of shoot_rabbit), then the hunter will shoot.
Otherwise he will be disappointed and shoot in the air be-
cause he has no hope for success. But there could be sev-
eral reasons for him being unable to kill the rabit: the rab-
bit is already dead, or the rifle is not loaded, or he does not
see the rabbit. . .

Note that DL-PPA has all the features of NPDDL, like
the implicit frame axiom, and it additionally allows for
modal operators. Hence, summarizing, we study languages
with and without the sequence operator, with and without
the implicit frame axiom, and with and without modali-
ties. A mid-term goal of our work is to study combinations
of such features in a systematic way, and we view this re-
stricted set of languages as a meaningful set of representa-
tive languages to start with.

4 Polynomial-Time Translations
In this section, we exhibit translations between some of our
languages of interest which can be carried out in polyno-
mial time (hence, a fortiori, are polynomial-size). We re-
mark that the identity function is an obvious polynomial-
time translation from restricted DL-PPA into DL-PPA.
We first show that any NNFAT action description α can
be translated in polynomial time to an NPDDL action de-
scription f(α). The translation looks like a simple rewrit-
ing of α, but we have to care about (1) the fact that in
NNFAT, a variable not explicitly set to a value can take
any value in the next state s′, contrary to persistency by
default in NPDDL, and (2) the fact that ∨ is inclusive-or
in NNFAT, while nondeterministic choice in NPDDL
is interpreted as one effect taking place (but not both). For
(1) we will make explicit in the NPDDL translation that
these variables can take any value, and for (2) it will turn
out that in the translation of α1 ∨ α2 into f(α1) | f(α2),
f(α1) will encode all possible transitions of α1, including
those of α1 ∧ α2 (the “inclusive part” of the ∨), and simi-
larly for f(α2).
The translation f is defined inductively as follows for an
NNFAT action description 〈α, P 〉:

1. if V(α) ⊆ P , then
f(α) =

(
¬αB⊥

)
&
(
αB(&

p∈P
(p | ¬p))

)
;

2. if V(α) 6⊆ P and V(α1) ⊆ P , then
f(α1∨α2) =

(
¬α1B f(α2)

)
&
(
α1B(&

p∈P
(p | ¬p))

)
;

dually for V(α2) ⊆ P ;

3. if V(α) 6⊆ P and V(α1) ⊆ P , then
f(α1∧α2) =

(
α1B f(α2)

)
&
(
¬α1B⊥

)
; dually for

V(α2) ⊆ P ;

4. f(p′) = p&
(

&
q∈P,q 6=p

(q | ¬q)
)

;

5. f(¬p′) = ¬p&
(

&
q∈P,q 6=p

(q | ¬q)
)

;

6. if V(α1),V(α2) 6⊆ P , f(α1 ∧ α2) = f(α1) & f(α2);

7. if V(α1),V(α2) 6⊆ P , f(α1 ∨ α2) = f(α1) | f(α2).

Observe for future reference that for all states s, all possible
modifications 〈e+, e−〉 in M(f(α), s) are P -complete in
the sense that e+ ∪ e− = P (all variables are mentioned in
e+ or e−). This is easily seen by induction on the definition
of f .

Proposition 16. Let 〈α, P 〉 be an NNFAT action de-
scription. Then we have s′ ∈ α(s)⇐⇒ s′ ∈ f(α)(s).

PROOF. The translation is clearly polynomial-time, since
the “gadgets” added to the rewriting in the first 5 cases in-
volve no recursive call of f . We now show that it is correct,
by induction on the structure of α.

1. First assume V(α) ⊆ P . Then by the semantics of
NNFAT, s′ ∈ α(s) holds if and only if s satisfies
α, which is equivalent to s satisfying α and s′ being
arbitrary, which is equivalent to s′ ∈ f(α)(s) by the
definition of f(α) and the semantics of NPDDL.

2. Now assume α = α1 ∨ α2 and V(α1) ⊆ P .
For s′ ∈ α1(s), we have s′ ∈ α(s), and since
we have V(α1) ⊆ P , we have that s satisfies α1,
and hence s′ ∈ f(α)(s) is equivalent to s′ ∈(&p∈P (p | ¬p)

)
(s), which is true for all s′; hence

both s′ ∈ α(s) and s′ ∈ f(α)(s) hold. Now for
s′ /∈ α1(s), we have s′ ∈ α(s) if and only if s′ ∈
α2(s), which is equivalent to s′ ∈ f(α2)(s) by the
induction hypothesis, and this in turn is equivalent to
s′ ∈ f(α)(s) by the definition of f(α1 ∨ α2) and the
semantics of NPDDL.

3. Now assume α = α1 ∧ α2 and V(α1) ⊆ P . We have
that s ∈ α(s) is equivalent to s′ ∈ α1(s)∧s′ ∈ α2(s),
and since we have V(α1) ⊆ P , this is equivalent to
s |= α1 ∧ s′ ∈ α2(s), which in turn is equivalent to
s |= α1 ∧ s′ ∈ f(α2)(s) by the induction hypothesis,
which is finally equivalent to s′ ∈ f(α)(s) by the def-
inition of f(α1 ∧α2) and the semantics of NPDDL.

4. Now let α = p′. Then s′ ∈ α(s) is equivalent to
p ∈ s′ with s′ otherwise arbitrary, which is clearly
equivalent to s′ ∈ f(α)(s).

5. The proof for α = ¬p′ is symmetric to the previous
case.

6. Let α = α1∧α2. Then s′ ∈ α(s) is equivalent to s′ ∈
α1(s) ∧ s′ ∈ α2(s), and by the induction hypothesis
this is equivalent to s′ ∈ f(α1)(s) ∧ s′ ∈ f(α2)(s).
Now since the possible modifications of f(α1) and
f(α2) are P -complete, it is easily seen from the
definition of the semantics of NPDDL that the

set of possible modifications M(f(α1) & f(α2), s) is
exactly M(f(α1), s) ∩ M(f(α2), s), so that s′ ∈
f(α1)(s) ∧ s′ ∈ f(α2)(s) is equivalent to s′ ∈(
f(α1) & f(α2)

)
(s), that is, to s′ ∈ f(α)(s).

7. Finally let α = α1 ∨ α2. Assume first s′ ∈ α(s),
and by symmetry s′ ∈ α1(s); then by the induc-
tion hypothesis we have s′ ∈ f(α1)(s) and hence,
s′ ∈

(
f(α1) | f(α2)

)
(s) = f(α)(s). Conversely, as-

sume s′ ∈ f(α)(s), then by the definition of f(α)
and the semantics of | we have s′ ∈ f(α1)(s) or
s′ ∈ f(α2)(s). Assume by symmetry s′ ∈ f(α1)(s).
Then by the induction hypothesis we have s′ ∈ α1(s)
and hence, s′ ∈ (α1 ∨ α2)(s), that is, s′ ∈ α(s).

�

The following propositions are quite intuitive, because
NPDDLseq and restricted DL-PPA are essentially the
same: ϕB . . . is analogous to ϕ?, | is analogous to ∪, and
& is analogous to u. However, we must pay attention to
two facts. The first difference between the languages is
that in NPDDLseq, if ϕ is not true in ϕBα, then the
action just does not change the current state whereas in
DL-PPA, ϕ being false results in a failure. The other
difference is that formulas in NPDDLseq must be in
NNF, while DL-PPA does not have restrictions on the
occurence of ¬ but does not have the ∧ connective.

Proposition 17. There is a polynomial-time translation of
NPDDLseq into restricted DL-PPA.

PROOF. Consider an NPDDLseq action description α.
The translation f first replaces each subformula of the form
ϕ ∧ ψ in α with ¬(¬ϕ ∨ ¬ψ), then it computes an action
description in restricted DL-PPA as follows:

f(ε) = >?
f(p) = +p
f(¬p) = −p
f(α1 &α2) = f(α1) u f(α2)
f(ϕBα) =

(
ϕ?; f(α)

)
∪ (¬ϕ?)

f(α1 |α2) = f(α1) ∪ f(α2)
f(α1;α2) = f(α1); f(α2)

It is easy to check that this translation can be computed in
polynomial time and that it is correct. In particular, ϕ is
duplicated in the fifth line but it involves no recursive call
of f , hence preserving polynomial size (the rewriting of¬ϕ
into a DL-PPA formula can be done in linear time), and
¬ϕ? in the same line ensures that the action does nothing
but does not fail when ϕ is not satisfied. �

The proof of the converse is completely symmetric.

Proposition 18. There is a polynomial-time translation of
restricted DL-PPA to NPDDLseq.

PROOF. Consider a restricted DL-PPA action descrip-
tion 〈α, P 〉. The translation f first replaces each subfor-
mula of the form ¬(ϕ ∨ ψ) with (¬ϕ ∧ ¬ψ), ending up
with a description in which all formulas are in NNF, then
it computes an action description in NPDDLseq as fol-
lows:

f(p← ϕ) = (ϕB p) &(¬ϕB¬p)
f(ϕ?) = (ϕB ε) |(¬ϕB⊥)
f(α1;α2) = f(α1); f(α2)
f(α1 ∪ α2) = f(α1) | f(α2)
f(α1 u α2) = f(α1) & f(α2)

It is easy to check that this translation can be computed
in polynomial time and that it is correct. In particular, ϕ
is duplicated in the first and second lines but it involves
no recursive call of f , hence preserving polynomial size,
and ¬ϕB⊥ in the second line ensures that the action fails
when ϕ is not satisfied. �

5 Complexity of Deciding Successor-
ship

We now turn to studying the complexity of queries to ac-
tion descriptions. In this paper, we concentrate on the most
natural query, which is formally defined by the following
computational problem.

Definition 19 (IS-SUCC). Let L be an action language.
The decision problem IS-SUCC is defined by:

• input: an action description 〈α, P 〉 ∈ L and two
states s, s′ ⊆ P ,

• question: is s′ an α-successor of s?

Proposition 20. The problem IS-SUCC is polynomial-
time solvable for L = NNFAT.

PROOF. From the semantics of NNFAT it follows that
deciding s′ ∈ α(s) amounts to deciding whether the as-
signment to P ∪ {p′ | p ∈ P} induced by s, s′ satisfies α,
which can clearly be done in linear time. �

Proposition 21. The problem IS-SUCC is in NP for L =
NPDDLseq.

PROOF. We define a witness for a positive instance to
be composed of either α1 or α2 for each subexpression
α1 |α2 of α, and of a state t for each subexpression α1;α2
(representing the guessed intermediate state of the execu-
tion). Such a witness is clearly of polynomial size. Now
verifying it amounts to verifying that when the nondeter-
ministic choices are those encoded by the witness and the
execution of sequence constructs go through the encoded
intermediate states, s′ is indeed an α-successor of s. This
can clearly be done in polynomial time since there remains
only to evaluate conditions of B constructs in given states
and applying effects of the form p or ¬p. �

For showing hardness, we build a specific action able to
“produce” all and only satisfiable 3-CNF formulas. For
this we first define an encoding of any 3-CNF formula ϕ
over n variables as an assignment to a polynomial number
of variables.

Notation 22. Let n ∈ N and Xn be the set of variables
{x1, . . . , xn}. Observe that there are a cubic number Nn
of clauses of length 3 over Xn (any choice of 3 variables
with a polarity for each). We fix an arbitrary enumeration
γ1, γ2, . . . , γNn

of all these clauses, and we define Qn to
be the set of variables {q1, q2, . . . , qNn

}. Then we identify
an assignment s to Qn to the 3-CNF formula over Xn,
written ϕ(s), which for all i contains the clause γi if and
only if qi ∈ s holds.
We also write s(ϕ) for the assignment toQn which encodes
a 3-CNF formula ϕ over Xn. By ` ∈ γi we mean that the
literal ` occurs in the clause γi.

Example 23. Let n = 2, and consider an enumeration
of all clauses over variables X2 = {x1, x2} which starts
with γ1 = (x1 ∨ x1 ∨ x2), γ2 = (x1 ∨ x1 ∨ ¬x2), γ3 =
(x1 ∨ ¬x1 ∨ x2), γ4 = (x1 ∨ ¬x1 ∨ ¬x2), γ5 = (¬x1 ∨
¬x1∨x2), γ6 = (¬x1∨¬x1∨¬x2), Then the 3-CNF
ϕ = (x1 ∨ x1 ∨ x2)∧ (¬x1 ∨¬x1 ∨ x2) is identified to the
state s(ϕ) = {q1, q5}.

Using Notation 22, for all n ∈ N we define the NPDDL
action description 〈βn, Qn〉 by

βn = &
x∈Xn

((&
γi:x∈γi

(qi | ε)
) | (&

γi:¬x∈γi

(qi | ε)
))

Intuitively, βn chooses an assignment (⊥ or >) to
each variable in Xn (outermost nondeterministic choices).
Whenever it chooses one, it chooses nondeterministically
some clauses which are satisfied by it, and adds them to
the result. Hence it builds a satisfiable formula (which is
satisfied precisely by—at least—the assignment made of
its choices over each variable).

Lemma 24. Let n ∈ N and let ϕ be a 3-CNF formula
over Xn. Then ϕ is satisfiable if and only if s(ϕ) is a βn-
successor of the state ∅.

PROOF. If ϕ is satisfiable, let sX be an assignment to Xn

which satisfies it. Consider the execution of βn in which
for each x, when the subexpression corresponding to x is
executed, the left (resp. right) subexpression of the non-
deterministic choice is executed if x ∈ sX holds (resp.
if x /∈ sX holds). Finally, consider the execution of this
expression &(qi | ε) in which for all i, qi (resp. ε) is exe-
cuted when ϕ contains (resp. does not contain) the clause
γi. Clearly, this execution reaches s(ϕ). Conversely, if an
execution reaches a state s, then a model of ϕ(s) can be
built by considering each variable x ∈ Xn, and including
(resp. not including) x if and only if the execution went
through the left (resp. right) of the nondeterministic choice
when the subexpression corresponding to x was executed.
�

Since βn can clearly be built in polynomial time given
a set of variables Xn, Lemma 24 directly gives a reduc-
tion from the 3-SAT problem to the problem IS-SUCC for
NPDDL. Hence the latter problem is NP-hard, and since
we have shown IS-SUCC to be in NP for NPDDLseq
(Proposition 21), we have the following.

Proposition 25. The problem IS-SUCC is NP-complete
for L = NPDDL and for L = NPDDLseq.

Finally, since NPDDLseq and restricted DL-PPA are
translatable into each other in polynomial time (Proposi-
tions 17 and 18), we have the following.

Corollary 26. The problem IS-SUCC is NP-complete
when L is restricted DL-PPA.

We finally turn to the complexity of IS-SUCC for
DL-PPA.

Proposition 27. The problem IS-SUCC is PSPACE-
complete for L = DL-PPA.

PROOF. It is known that model checking for DL-PPA
is PSPACE-complete [4]. This problem is the one of
checking whether a given state s is in ‖ϕ‖ for a given
DL-PPA formula ϕ. We reduce it to IS-SUCC for
DL-PPA as follows.
Suppose that we are given a DL-PPA formula ϕ over
the set P = {p1, . . . , pn}, and let without loss of gener-
ality s = {p1, . . . , pk}. Let r (standing for “result”) be a
fresh variable, and build the DL-PPA action description
〈α, P ∪ {r}〉 with

α = (〈+p1; . . . ; +pk;−pk+1; . . . ;−pn〉ϕ?; +r)
∪(¬〈+p1; . . . ; +pk;−pk+1; . . . ;−pn〉ϕ?;−r)

Clearly, α can be built in time polynomial in the size of ϕ,
and α does nothing except setting r to > if s ∈ ‖ϕ‖ holds,
and to ⊥ otherwise. It follows that s is a model of ϕ if and
only if the state {r} is an α-successor of the state ∅.2
Hence IS-SUCC is PSPACE-hard for L = DL-PPA.
For membership, we reduce it to the satisfiability problem
for DL-PPA formulas, which is in PSPACE [4]. Given
an action description 〈α, P 〉 with P = {p1, . . . , pn} , a
state s = {p1, . . . , pk} (without loss of generality) and a
state s′, we define ϕ to be the DL-PPA formula

〈+p1; . . . ; +pk;−pk+1; . . . ;−pn;α〉(
∧
p∈s′

p∧
∧

p∈P\s′

¬p)

Clearly, ϕ can be built in polynomial time, and it is sat-
isfiable if and only if the program “go to state s and then
execute α” can lead to the state s′, which is just a rephras-
ing of s′ being an α-successor of s. �

2The choice of ∅ is arbitrary, since the variables of ϕ are all set by the
modalities and are used only there and hence, their initial and final values
do not matter.

6 Succinctness
In this section, we study the relative succinctness of action
languages. Succinctness is formally defined as follows [9].

Definition 28 (succinctness). An action language L1 is
said to be at least as succinct as an action language L2, de-
noted by L1 � L2, if there exists a polynomial-size trans-
lation from L2 to L1. If L1 � L2 and L2 6� L1 hold,
then L1 is said to be strictly more succinct than L2, written
L1 ≺ L2. If L1 � L2 and L2 � L1 hold, then L1 and L2
are said to be equally succinct.

The succinctness relation � is reflexive and transitive,
hence it is a preorder. However, it is not antisymmetric
and thus not an order.
Clearly, if there is a polynomial-time translation from L2
to L1 then L1 � L2 holds. Hence we have the following
as a direct consequence of Propositions 17 and 18.

Proposition 29. The languages NPDDLseq and re-
stricted DL-PPA are equally succinct.

Our next results rely on assumptions about nonuniform
complexity classes. Recall that P/poly (resp. NP/poly)
is the class of all decision problems such that for all n ∈ N,
there is a polynomial-time algorithm (resp. a nondetermin-
istic polynomial-time algorithm) which decides the prob-
lem for all inputs of size n [2]. The assumptions NP 6⊆
P/poly and PSPACE 6⊆ NP/poly which we use are
standard ones; in particular, NP ⊆ P/poly would imply
a collapse of the polynomial hierarchy at the second level
(Karp-Lipton theorem), and PSPACE ⊆ NP/poly
would imply a collapse at the third level, since already
coNP ⊆ NP/poly would do so [21].

Proposition 30. There is no polynomial-size translation
from NPDDL into NNFAT unless NP ⊆ P/poly
holds.

PROOF. We use the action description βn that was intro-
duced in Section 5; the size of βn is clearly polynomial in
n.
Assume that for every NPDDL action description αn
there is an equivalent NNFAT action description α′n of
size polynomial in that of αn. In particular, there is an
NNFAT action description β′n of size polynomial in n
which is equivalent to βn. Then the following is a nonuni-
form polynomial-time algorithm for the 3-SAT problem;
given a formula ϕ in 3-CNF over n variables:

1. encode ϕ into a state s(ϕ) over the set of variablesQn
as in Notation 22;

2. decide whether s(ϕ) is a β′n-successor of ∅;

3. claim that ϕ is satisfiable if the answer is positive, oth-
erwise claim that ϕ is unsatisfiable.

All steps are polynomial-time (Proposition 20), the algo-
rithm is correct (Lemma 24), and the algorithm depends
only on the number of variables in ϕ (which is polynomi-
ally related to the size of ϕ), hence this is indeed a nonuni-
form polynomial time algorithm for 3-SAT. Since 3-SAT
is NP-complete, we get NP ⊆ P/poly. �

We finally consider the relative succinctness of DL-PPA
and NPDDLseq. Since model checking in DL-PPA
is PSPACE-complete, there can be no polynomial
time translation from DL-PPA to NPDDLseq unless
PSPACE = NP. However, we will prove a stronger
result.
For this, we use the problem of deciding whether a QBF
formula is valid, for QBFs restricted to be of the form
Φ = ∀x1∃x2 . . . ∀x2n−1∃x2nϕ, with ϕ a 3-CNF formula
and V(ϕ) ⊆ X2n = {x1, . . . , x2n}; clearly, deciding va-
lidity is as hard for such formulas (hereafter called “nor-
malized QBFs”) as for unrestricted QBFs, and hence it is
PSPACE-complete.
For all n ∈ N, we define the DL-PPA action description
〈δ2n, X2n ∪Q2n ∪{r}〉, where Q2n is as in Notation 22, r
is a fresh variable (standing for “result”), and δ2n is defined
to be

r ←
(
[+x1 ∪ −x1]〈+x2 ∪ −x2〉
. . .
[+x2n−1 ∪ −x2n−1]〈+x2n ∪ −x2n〉ψ2n

)
with ψ2n =

∧
qi∈Q2n

(
qi → (

∨
x∈γi

x ∨
∨
¬x∈γi

¬x)
)

(rewritten

without ∧ nor → in polynomial time). Observe that the
size of δ2n is polynomial in n.

Lemma 31. Let Φ be a normalized QBF over the set of
variables X2n = {x1, . . . , x2n}. Then Φ is valid if and
only if s(ϕ) ∪ {r} is a δ2n-successor of s(ϕ).

PROOF. By the semantics of DL-PPA, the modality
[+xi ∪ −xi] mimicks exactly the quantification ∀xi, and
〈+xi ∪−xi〉 mimicks exactly ∃xi. On the other hand, it is
easy to see that an assignment sX to X2n is a model of ϕ if
and only if sX∪s(ϕ) is a model of ψ2n. It follows that Φ is
valid if and only if [+x1∪−x1]〈+x2∪−x2〉 . . . [+x2n−1∪
−x2n−1]〈+x2n∪−x2n〉ψ2n is true in s(ϕ) and hence, that
Φ is valid if and only if δ2n assigns r to > when run in
s(ϕ), which finishes the proof. �

Using δ2n, the proof of the following result is parallel to
that of Proposition 30.

Proposition 32. There is no polynomial-size translation
from DL-PPA into NPDDLseq unless PSPACE ⊆
NP/poly holds.

PROOF. Assume that there is a polynomial-size transla-
tion from DL-PPA into NPDDLseq, and for all n, let
δ′2n be an NPDDLseq description equivalent to δ2n and
of size polynomial in that of δ2n, hence in n. Then the fol-
lowing is a nonuniform nondeterministic polynomial-time

NNFAT

NPDDL

NPDDLseq restricted DL-PPA

DL-PPA

Figure 7.1: Succinctness relations between the languages.
A thick arrow from L to L′ means L ≺ L′, a thin line
means L � L′, and a dashed arrow means that it is still
unknown whether L � L′.

algorithm for the problem of deciding the validity of a nor-
malized QBF; given a normalized QBF over 2n variables,
with matrix ϕ:

1. encode ϕ into s(ϕ),

2. decide whether s(ϕ)∪{r} is a δ′2n-successor of s(ϕ),

3. claim that Φ is valid if the answer is positive, other-
wise claim that Φ is not valid.

The steps are all feasible in deterministic or nondeterminis-
tic polynomial time (Proposition 21), the algorithm is cor-
rect by Lemma 31, and δ2n depends only on the number
of variables of Φ, hence this is indeed a nonuniform non-
deterministic polynomial-time algorithm for deciding the
validity of a normalized QBF. Since this is a PSPACE-
complete problem, we conclude PSPACE ⊆ NP/poly.
�

7 Conclusion
We have studied the complexity of deciding whether a state
is a successor of another one through a given action, and the
relative succinctness of three languages which are suitable
for specifying planning tasks and actions. We have shown
that deciding successorship is polynomial-time solvable
for NNFAT, NP-complete for NPDDL, NPDDLseq,
and restricted DL-PPA, and PSPACE-complete for
DL-PPA. The succinctness results agree with the intu-
ition that the languages which are more succinct also have
harder queries; the relationships which we have shown are
represented on Figure 7.1.
An examination of the proof of Proposition 32 reveals that
the reasons for DL-PPA being strictly more succinct than
NPDDLseq are the modal operators. Our mid-term goal
is to investigate complexity of queries and succinctness
in a more systematic way, for languages constructed us-
ing combinations of features like the sequence operator,

modalities, Kleene star, parallel execution, etc. For exam-
ple, we want to try to find out whether DL-PPA without
the Kleene star is strictly less succinct than DL-PPA (be-
cause until now the only elimination of ∗ that we know
requires exponential space). Another interesting ques-
tion is whether NPDDLseq is strictly more succinct than
NPDDL, because IS-SUCC is NP-complete for both of
them.

Acknowledgements
This work has been supported by the French National Re-
search Agency (ANR) through project PING/ACK (ANR-
18-CE40-0011).

References
[1] Alexandre Albore, Héctor Palacios, and Hector

Geffner. Compiling uncertainty away in non-
deterministic conformant planning. In Proc.
19th European Conference on Artificial Intelligence
(ECAI 2010), volume 215, pages 465–470, 2010.

[2] Sanjeev Arora and Boaz Barak. Computational com-
plexity: a modern approach. Cambridge University
Press, 2009.

[3] Christer Bäckström and Peter Jonsson. Algorithms
and limits for compact plan representations. Journal
of Artificial Intelligence Research, 44:141–177, 2012.

[4] Philippe Balbiani, Andreas Herzig, François
Schwarzentruber, and Nicolas Troquard. DL-PA
and DCL-PC: model checking and satisfiability
problem are indeed in PSPACE. arXiv preprint
arXiv:1411.7825, 2014.

[5] Philippe Balbiani, Andreas Herzig, and Nicolas Tro-
quard. Dynamic logic of propositional assignments:
a well-behaved variant of PDL. In Proc. 28th An-
nual ACM/IEEE Symposium on Logic in Computer
Science (LiCS 2013), pages 143–152, 2013.

[6] Piergiorgio Bertoli, Alessandro Cimatti, Ugo Dal
Lago, and Marco Pistore. Extending PDDL to nonde-
terminism, limited sensing and iterative conditional
plans. In Proc. ICAPS 2003 Workshop on PDDL,
2003.

[7] Daniel Bryce, Subbarao Kambhampati, and David E.
Smith. Planning graph heuristics for belief space
search. Journal of Artificial Intelligence Research,
26:35–99, 2006.

[8] Alessandro Cimatti and Marco Roveri. Conformant
planning via symbolic model checking. Journal of
Artificial Intelligence Research, 13:305–338, 2000.

[9] Adnan Darwiche and Pierre Marquis. A knowledge
compilation map. Journal of Artificial Intelligence
Research, 17:229–264, 2002.

[10] Maria Fox and Derek Long. The third international
planning competition: Temporal and metric planning.
In Proc. 6th International Conference on Artificial In-
telligence Planning Systems (AIPS 2002), pages 333–
335, 2002.

[11] Maria Fox and Derek Long. PDDL2. 1: An exten-
sion to PDDL for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research,
20:61–124, 2003.

[12] Hector Geffner and Blai Bonet. A Concise Introduc-
tion to Models and Methods for Automated Planning.
Morgan & Claypool Publishers, 2013.

[13] Tomas Geffner and Hector Geffner. Compact poli-
cies for fully observable non-deterministic planning
as SAT. In Proc. 28th International Conference on
Automated Planning and Scheduling (ICAPS 2018),
pages 88–96, 2018.

[14] Andreas Herzig, Frédéric Maris, and Julien Vianey.
Dynamic logic of parallel propositional assignments
and its applications to planning. In Proc. 28th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI 2019), pages 5576–5582, 2019.

[15] Drew McDermott. PDDL–the planning domain
definition language. Technical Report CVC TR-
98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control, 1998. Available at:
www.cs.yale.edu/homes/dvm (consulted on
2020/03/16).

[16] Christian J. Muise, Sheila A. McIlraith, and Vaishak
Belle. Non-deterministic planning with conditional
effects. In Proc. 24th International Conference on
Automated Planning and Scheduling (ICAPS 2014),
pages 370––374, 2014.

[17] Bernhard Nebel. On the compilability and expressive
power of propositional planning formalisms. Journal
of Artificial Intelligence Research, 12:271–315, 2000.

[18] Raymond Reiter. The frame problem in the situation
calculus: A simple solution (sometimes) and a com-
pleteness result for goal regression. In Vladimir Lif-
schitz, editor, Artificial intelligence and mathemati-
cal theory of computation: papers in honor of John
McCarthy, pages 359–380. Academic Press Profes-
sional, 1991.

[19] Jussi Rintanen. Complexity of planning with par-
tial observability. In Proc. 14th International Con-
ference on Automated Planning and Scheduling
(ICAPS 2004), pages 345–354, 2004.

[20] Son Thanh To, Tran Cao Son, and Enrico Pontelli. A
generic approach to planning in the presence of in-
complete information: Theory and implementation.
Artificial Intelligence, 227:1–51, 2015.

[21] Chee K Yap. Some consequences of non-uniform
conditions on uniform classes. Theoretical computer
science, 26(3):287–300, 1983.

