
Knowledge Compilation for Nondeterministic Action Languages

Sergej Scheck, Alexandre Niveau, Bruno Zanuttini
Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14 000 Caen, France

sergej.scheck@unicaen.fr, alexandre.niveau@unicaen.fr, bruno.zanuttini@unicaen.fr

Abstract

We study different languages for representing nondeterminis-
tic actions in planning from the point of view of knowledge
compilation. Precisely, we consider succintness issues (how
succinct is the description of an action in each language?) and
complexity issues (tractability or hardness of several queries
which arise naturally in planning and belief tracking). We
study an abstract, nondeterministic version of PDDL, non-
deterministic conditional STRIPS, the language NNFAT of
NNF action theories, and the language NPDDLseq obtained
by adding a sequence operator to nondeterministic PDDL.
We show that these languages have different succinctness and
different complexity even for the most natural queries.

Introduction
In automated planning, a central aspect of the description
of problems is the formal representation of actions. Such
representations are indeed needed for specifying the actions
available to the agent (PDDL (McDermott 1998) is a stan-
dard language for this), and also for the planners to operate
on them while searching for a plan.

We consider different representation languages in the for-
mal framework of the knowledge compilation map (Dar-
wiche and Marquis 2002). This framework deals with the
study of formal languages under the point of view of queries
(how efficient is it to answer various queries depending on
the language?), transformations (how efficient is it to trans-
form or combine different representations in a given lan-
guage?), and succinctness (how concise is it to represent
knowledge in each language?).

The knowledge compilation map has been introduced for
representations of Boolean functions, such as Boolean for-
mulas in negation normal form, ordered binary decision di-
agrams, etc. (Darwiche and Marquis 2002). As far as we
know there has been no systematic study of languages for
representing actions per themselves. This is however an im-
portant problem, as planners need to query action represen-
tations again and again while searching for a plan (e.g., to
find out which actions are applicable at the current node of
the search tree). Hence having a clear picture of the proper-
ties of languages is of interest for developing such planners.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For instance, if a planner uses an efficient representation
of actions (like binary decision diagrams) but this represen-
tation is exponentially larger than the specification of the
action (for instance, in PDDL), then it may not be worth
overall to convert the specification into the efficient repre-
sentation, and this might suggest to make the planner work
directly with the specification. The complexity of querying
the various representations (like checking whether the action
is applicable in some state, or whether it can lead from some
state to another one) is also of importance for the develop-
ment of algorithms: depending on the type of queries used
by the algorithm, one language may be preferred to another
one because it allows to answer them more efficiently. Of
course, there is typically a tradeoff between succinctness of
languages and tractability of queries.

However, there have been few papers studying these as-
pects for planning. Nebel (2000) has considered questions
very similar to ours; his study uses a rather powerful notion
of compilation, where translations from one formal language
to another are allowed to change the set of variables and the
set of actions. This captures compilation schemes where one
is interested in preserving the existence of plans and their
size. Contrastingly, we are interested in a strict notion of
compilation, where the set of variables and the specification
of initial states and goals are unchanged by the translation,
while each action is translated into one with the same se-
mantics. This is more restricted , but makes translations ap-
plicable in broader settings (for instance, to problems where
we want to count or enumerate plans). Bäckström and Jons-
son (2012) have studied representations of plans with respect
to their size and to the complexity of retrieving the individ-
ual actions which they prescribe at each step . This is also
related to our work, but with a focus on languages for rep-
resenting plans, while we study languages for representing
actions. Also related is the translation of HTN specifications
into PDDL proposed by Alford, Kuter, and Nau (2009). The
objects of interest there (HTN specifications) are different
from ours (plain action specifications), though our study of
action specifications using a construct for sequences is rem-
iniscent of HTN decompositions.

We are interested in (purely) nondeterministic actions,
as in fully observable nondeterministic planning and con-
formant planning (Rintanen 2004; Albore, Palacios, and
Geffner 2010; Geffner and Bonet 2013; Muise, McIlraith,

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

308

and Belle 2014; To, Son, and Pontelli 2015; Geffner and
Geffner 2018). We also focus on propositional domains, in
which states are assignments to a given set of propositions.

We consider four representation languages: NPDDL,
which is a grounded, nondeterministic version of PDDL,
a language typically used for specifying actions (by a do-
main expert); NSTRIPS, a nondeterministic version of con-
ditional STRIPS; NNF action theories, which are typi-
cally used as an internal representation by solvers (Cimatti,
Roveri, and Traverso 1998; To, Son, and Pontelli 2015); and
NPDDLseq, obtained by enriching NPDDL by a sequence
operator, like in DL-PA (Balbiani, Herzig, and Troquard
2013). Despite different typical uses, these are all languages
for representing actions (as nondeterministic mappings from
states to states). We choose these because they use different
constructs, different structural restrictions on expressions,
and different representations of persisting values. Our mid-
term goal is to give a systematic picture of languages arising
from combinations of such constructs and restrictions.

Orthogonally, we also study two concrete representations
of expressions, as syntactic trees or as more compact cir-
cuits, where identical subexpressions are not repeated. The
former representation gives a natural measure of the size of
action specifications, while the latter is more compact and is
the one typically used for algorithmic efficiency (in particu-
lar for binary decision diagrams (Bryant 1992)).

We first give background about actions and logic, then
we define the action languages which we consider. We then
give our results: polynomial-time translations between the
languages, then results about the complexity of queries, and
finally separation results, which allow us to determine the
relative succinctness of the languages. Finally, we conclude.

Preliminaries
We consider a countable set of propositional state variables
P= {pi | i ∈N}. Let P⊂P be a finite set of state variables;
a subset of P is called a P-state, or simply a state. The in-
tended interpretation of a state s ∈ 2P is the assignment to P
in which all variables in s are true, and all variables in P\ s
are false. For instance, for P = {p1, p2, p3}, s = {p1, p3} de-
notes the state in which p1, p3 are true and p2 is false. We
write V(ϕ) for the set of variables occuring in an expression
ϕ; note that expressions may involve both variables in P and
variables not in P, so in general we do not have V(ϕ)⊆ P.

Actions We consider (purely) nondeterministic actions,
which map states to sets of states. Hence a single state may
have several successors through the same action.

Definition 1 (action). Let P⊂ P be a finite set of variables.
A P-action is a mapping a from 2P to 2(2

P). The states in
a(s) are called a-successors of s.

Note that a(s) is defined for all states s. We will consider
a to be applicable in s if and only if a(s) 6= /0.

Example 2. Consider a hunting example, described by
whether the rabbit is in sight and/or alive, and whether the
rifle is loaded. Let P = {in sight, alive, loaded}.

The action shoot rabbit can be described as “if alive then:
if loaded and in sight, then not loaded, and either alive and
not in sight, or not alive and in sight; otherwise state un-
changed”. The action is applicable only if the rabbit is alive
(otherwise it is not sensible to shoot at him). Then, if the
hunter is ready to shoot (the rifle is loaded and he sees the
rabbit), he shoots the rabbit (he might miss the rabbit who
hears the shot and runs away, so the action is nondetermin-
istic), and if he is not ready to shoot, then nothing happens.

Let s = {in sight, alive, loaded} be the state where all
variables are true. Then shoot rabbit(s) is the set of states
(“successors”) {s′,s′′} with s′ = s \ {loaded, in sight} =
{alive} and s′′ = s\{loaded,alive}= {in sight}.

We now introduce a formal setting for studying different
representations of actions.
Definition 3 (action language). An action language is an
ordered pair 〈L, I〉, where L is a set of expressions and I is a
partial function on L×2P such that, when defined on α ∈ L
and P⊂ P, I(α,P) is a P-action.

We call the expressions in L action descriptions, and call
I the interpretation function of the language. Observe that
those sets P’s such that I(α,P) is defined are a priori not
related to V(α); α may involve auxiliary variables (not in
P) which are not part of the state descriptions, and dually, a
state may assign variables of P which do not occur in α . If
L, I,P are fixed or clear from the context, then we write α(s)
instead of I(α,P)(s) for the set of all α-successors of s.
Definition 4 (translation). A translation from an action
language 〈L1, I1〉 to another language 〈L2, I2〉 is a function
f : L1× 2P → L2 such that I1(α,P) = I2(f (α,P),P) holds
for all α ∈ L1 and P⊂ P such that I1(α,P) is defined.

In words, this means that the L1-expression α and the L2-
expression f (α,P) describe the same P-action. Again, when
P is clear from the context, we write f (α) for f (α,P).

The translation f is said to be polynomial-time if it can
be computed in time polynomial in the size of α and P, and
polynomial-size if the size of f (α,P) is bounded by a fixed
polynomial in the size of α and P. Clearly, a polynomial-
time translation is necessarily also a polynomial-size one,
but the converse is not true in general.

Negation Normal Form A Boolean formula ϕ over a set
Q of variables is in negation normal form (NNF) if it is built
up from literals using conjunctions and disjunctions, i.e., if
it is generated by the grammar ϕ ::= q | ¬q | ϕ ∧ ϕ | ϕ ∨
ϕ , where q ranges over Q. Like other expressions, Q may
involve state variables (in P) and other variables (not in P).

The set of NNF formulas is complete, i.e., any Boolean
function can be described by an NNF formula. It is impor-
tant to note that a formula ϕ with V(ϕ)⊆ Q for some set of
variables Q can be viewed as a formula over Q (and the truth
value of the corresponding Boolean function does not de-
pend on the variables in Q\V(ϕ)). For a Boolean formula ϕ

over Q and an assignment t to Q, we write t |= ϕ (“t satisfies
ϕ”) if ϕ evaluates to true under the assignment t. We always
use notation s, t, . . . for states, a,b, . . . for actions, α,β , . . .
for action descriptions, and ϕ,ψ, . . . for logical formulas.

309

Action Languages
The first language which we consider is the well-known
planning domain description language (PDDL). This lan-
guage is a standardized one used for specifying actions at
the relational level, widely used as an input for planners,
especially in the international planning competitions (Mc-
Dermott 1998; Fox and Long 2002, 2003). Since we are in-
terested in nondeterministic actions, we consider a nondeter-
ministic variant of PDDL inspired by NPDDL (Bertoli et al.
2003), and so as to abstract away from the precise syntax of
the specification language, we consider an idealized version.
Finally, we consider a grounded (propositional) version.
Definition 5 (NPDDL). An NPDDL action description is
an expression α generated by the grammar

α ::= ε |+p | −p | ϕBα | (α ∪α) | α uα

where p ranges over P and ϕ over formulas in NNF over P.
Intuitively,

• ε describes the action with no effect (∀s : ε(s) = {s}),
• +p (resp.−p) is the action which sets p true (resp. false),
• B denotes conditional execution,
• ∪ denotes (exclusive) nondeterministic choice,
• u denotes simultaneous execution,
and, importantly, variables not explicitly set by the action
are assumed to keep their value. Also observe that auxiliary
variables are not allowed — only variables in P can occur.

We insist that this syntax is an idealization of nondeter-
ministic (grounded) PDDL; for instance, the action which
we write xB

(
+y∪ (−yu+z)

)
would be written

when x (oneof y (and (not y) z))
with the syntax of NPDDL (Bertoli et al. 2003).

In order to define the interpretation function I of NPDDL,
we first introduce a function J which for given α,P,s with
V(α)⊆ P and s⊆ P, gives a set of ordered pairs 〈Q+,Q−〉,
where Q+ (resp. Q−) is a set of variables of P which are
explicitly set to true (resp. to false) by α when executed in s
(the other variables being left unchanged from s):
• J(ε,P,s) := {〈 /0, /0〉},
• J(+p,P,s) := {〈{p}, /0〉}, and J(−p,P,s) := {〈 /0,{p}〉},
• J(ϕBα,P,s) := J(α,P,s) if s |= ϕ , and J(ϕBα,P,s) :=
{〈 /0, /0〉} if s 6|= ϕ ,

• J(α ∪β ,P,s) := J(α,P,s)∪ J(β ,P,s),
• J(α uβ ,P,s) := {〈Q+

α ∪Q+
β
,Q−α ∪Q−

β
〉 | 〈Q+

α ,Q
−
α 〉 ∈ J(α,

P,s),〈Q+
β
,Q−

β
〉 ∈ J(β ,P,s),Q+

α ∩Q−
β
= Q−α ∩Q+

β
= /0}

where the last line can be read “when executed in s,
α u β has all those effects which are the consistent
union of an effect of α in s and one of β in s”.
As an example, for α = (+p1 ∪ (−p2 u+p3)) u (−p2 ∪
+p2), P = {p1, p2, p3}, and any s, we have J(α,P,s) =
{〈{p1},{p2}〉,〈{p1, p2}, /0〉,〈{p3},{p2}〉}, since in the last
combination, −p2u+p3 and +p2 are not consistent.1

1Note that this is in contrast to the usual semantics of STRIPS,
where addition would override deletion, thus “forgetting” −p2.

Then the interpretation function just formalizes the fact
that the other variables retain their value; for all NPDDL
expressions α and sets of variables P with V(α)⊆ P⊂ P,
∀s⊆P : I(α,P)(s) := {(s∪Q+)\Q−|〈Q+,Q−〉 ∈ J(α,P,s)}
and I(α,Q) is undefined for Q 6⊇ V(α) .

Note that the expression +pu−p (for an arbitrary p ∈P)
defines an action with no successor (which can be inter-
preted as an execution failing). We use ⊥ as a shorthand for
it (hence I(⊥,P)(s) = /0 for all P⊆ P,s⊆ P).
Example 6 (continued). The following is an NPDDL action
description for the action shoot rabbit of Example 2.

(¬aliveB⊥)u
(

(alive∧ in sight∧ loaded)
B(−loadedu (−in sight∪−alive))

)
We also study a natural extension of conditional STRIPS

to nondeterministic actions.
Definition 7 (NSTRIPS). An NSTRIPS action description
is an NPDDL expression of the form

l
i∈I

ϕiB
(
(`1,1

i u . . .u `
1, j1
i)∪ . . .∪ (`ki,1

i u . . .u `
ki, jki
i)

)
where each `k, j

i is either ⊥, or +p or −p for some p ∈ P.
In words, an NSTRIPS action description specifies a set

of conditions so that, when the action is applied in a state
s, for each condition satisfied by s exactly one of the corre-
sponding effects occurs.
Example 8 (continued). The following is an NSTRIPS ac-
tion description for the action shoot rabbit of Example 2:

(¬aliveB⊥)

u
(

(alive∧ in sight∧ loaded) B
((−loadedu−in sight)∪ (−loadedu−alive))

)
The language NSTRIPS is complete, since any action a

can at least be represented by one condition for each state s
(satisfied by exactly s), associated to either (1) a choice (∪)
between some “conjunctions” of atoms, one conjunction per
a-successor s′ of s (setting all variables as in s′), or (2) to the
degenerate choice of conjunctions ⊥, when a(s) is empty.

We are also interested in the language NPDDL as ex-
tended by the sequential execution operator “;”.
Definition 9 (NPDDLseq). An NPDDLseq action descrip-
tion is an expression α generated by the grammar

α ::= ε |+p | −p | ϕBα | (α ∪α) | α uα | α ; α

where p ranges over P and ϕ over formulas in NNF over P.
Let us emphasize that “;” is not bound to occur only at

the root of the expression. The interpretation function is the
same as for NPDDL expressions, augmented with
∀s⊆ P : I(α;β ,P)(s) := {s′ ⊆ P | ∃t ∈ α(s) : s′ ∈ β (t)}

Example 10. The NPDDLseq description
+ peven;(
+ p1u (pevenB−peven)u (¬pevenB+peven)

)
∪ −p1;

. . .(
+ pnu (pevenB−peven)u (¬pevenB+peven)

)
∪ −pn;

¬pevenB⊥
describes an action which maps any state to the set of all
states with an even number of pi’s, and peven, set to true.

310

Since NSTRIPS is a sublanguage of NPDDL and
NPDDLseq, NPDDL and NPDDLseq are also complete.

We finally define the language of (NNF) action theories.
Such representations are typically used by planners which
reason explicitly on sets of states (aka belief states), since
they allow for symbolic operations on belief states (Cimatti
and Roveri 2000; Bryce, Kambhampati, and Smith 2006; To,
Son, and Pontelli 2015). Note that such planners in fact use
more efficient representations, like OBDDs or DNFs, which
are defined by further restrictions on NNF. However, as our
results show, NNF action theories are already more efficient
(for queries) but larger (less succinct) than the other lan-
guages which we study, so this holds for all sublanguages of
NNF, too. Then a sublanguage of NNF to work with can be
chosen using the knowledge compilation map for Boolean
functions (Darwiche and Marquis 2002).

To prepare the definition we associate an auxiliary vari-
able p′ /∈P to each variable p ∈P; p′ denotes the value of p
after the action took place, while p denotes the value before.
Definition 11 (NNFAT). An NNFAT action description is a
Boolean formula α in NNF over Pα ∪{p′ | p∈ Pα} for some
set of state propositions Pα ⊂ P.

The interpretation of an NNFAT action description α is
defined for all P⊆ P such that P⊇ V(α)∩P (that is, when
all state propositions have a value) by
∀s⊆ P : I(α,P)(s) = {s′ | s∪{p′ | p ∈ s′} |= α}

where s∪{p′ | p ∈ s′} is the assignment to P∪{p′ | p ∈ Pα}
induced by s,s′. For P 6⊇ V(α)∩P, I(α,P) is not defined.
In words, an NNFAT expression represents the set of all or-
dered pairs 〈s,s′〉 such that s′ is a successor of s, as a Boolean
formula over variables in P∪{p′ | p ∈ P}.

Importantly, NNFAT does not assume persistency of
values, so that if, for example, a variable does not ap-
pear at all in an NNFAT expression, then this means
that its value after the execution of the action can be
arbitrary. For instance, I(p′1 ∨ ¬p2,{p1, p2, p3})({p2}) =
{{p1},{p1, p2},{p1, p3},{p1, p2, p3}}

Obviously, every action can be represented in NNFAT,
since NNF is a complete language for Boolean functions.
Example 12 (continued). The action shoot rabbit of Exam-
ple 2 can be written as follows (using→ and 6↔ for readabil-
ity, but keeping in mind that they are shorthand notation for
longer NNF formulations):

alive

∧

 (loaded∧ in sight)

→ ¬loaded′∧
(

(in sight′∧¬alive′)
∨ (¬in sight′∧ alive′)

) 
∧

 (alive 6↔ alive′)
∨ (in sight 6↔ in sight′)
∨ (loaded 6↔ loaded′)

→ (loaded
∧ in sight

)
As can be seen, encoding the fact that the values of variables
persist unless stated otherwise requires subexpressions (here
the last conjunct) playing the same role as successor-state (or
frame) axioms in the situation calculus (Reiter 1991). This
typically requires much space, for what we give a formal
meaning later in the paper (Proposition 32).

Representations Since we study the succinctness of lan-
guages, it is crucial to define the size of action descriptions.
For this we consider two variants of each language.

The first variant corresponds to a representation of the
expressions α in the language by their syntactic tree (in-
cluding the Boolean formulas occuring in the expression, if
any). The second variant corresponds to the representation
of these expressions α by the directed acyclic graph, or cir-
cuit, obtained from the syntactic tree of α by iteratively iden-
tifying the roots of two isomorphic subexpressions to each
other, until no more reduction is possible (like for binary de-
cision diagrams (Bryant 1992)). Clearly, for all expressions
α , the circuit associated to α in this manner is unique, and it
can be computed in polynomial time from the tree or from a
nonreduced circuit.

As an illustration, Figure 1 gives the tree (left) and the as-
sociated circuit (right) for the same NPDDLseq expression.

Depending on the representation, we obtain two lan-
guages based on NNFAT, two based on NPDDL, and
two based on NPDDLseq. We write T-NNFAT, T-NPDDL,
and T-NPDDLseq for those languages with expressions
represented as trees, and C-NNFAT, C-NPDDL, and
C-NPDDLseq for those languages with expressions repre-
sented as reduced circuits. Since NSTRIPS is flat (the depth
of the underlying graph is bounded), there is no difference
between the circuit and the tree versions up to polynomial-
time transformations, except for the representation of con-
ditions ϕ; since, as it turns out, the representation of con-
ditions does not affect the results in this paper, we only
write NSTRIPS without specifying the representation, and
we say that NSTRIPS is a sublanguage of T-NPDDL or
C-NPDDL, meaning each time the corresponding version
of NSTRIPS.

Finally, for all languages and representations, we write
|α| for the size of an expression α in the representation,
namely the number of nodes and edges in the tree or DAG.

Polynomial-Time Translations
In this section we give some (easy) results about
polynomial-time translations between languages.

Proposition 13. The identity function is a polynomial-time
translation from NSTRIPS to T-NPDDL, from NSTRIPS
to C-NPDDL, from T-NPDDL to T-NPDDLseq, and from
C-NPDDL to C-NPDDLseq.

We now proceed to show that there is a polynomial-time
translation from NNFAT to NPDDL, for both representa-
tions. The translation looks like a simple rewriting of α , but
we have to take care about the fact that in NNFAT, a vari-
able not explicitly set to a value can take any value in the
next state s′, contrary to persistency by default in NPDDL.

Proposition 14. There is a polynomial-time translation
from T-NNFAT to T-NPDDL, and from C-NNFAT to
C-NPDDL.

PROOF. Let f be defined inductively as follows, for all
NNFAT expressions α and sets of variables P⊇ V(α)∩P:

1. for p ∈ P, f (p) = (¬pB⊥)u
(

pB
d

q∈P(+q∪−q)
)

;

311

;

∪ +p2 −p2 −p1

+p1 −p1 ; ;

∪ ∪+p4 −p4 −p3

+p3 −p3

+p4 −p4 −p3

+p3 −p3B B B B

¬ϕT −psat ¬ϕT −psat ¬ϕT −psat ¬ϕT −psat

;

∪ +p2 −p2 −p1

+p1 −p1 ;

∪ +p4 −p4 −p3

+p3 −p3 B

¬ϕC −psat

Figure 1: Tree (left) and circuit (right) representations of the same NPDDLseq action. Children are ordered from left to right;
ϕT (resp. ϕC) denotes a tree (resp. circuit) for ϕ . On the right diagram, nodes −p1 and −p3 are duplicated for readability.

2. for p ∈ P, f (¬p) = (pB⊥)u
(
¬pB

d
q∈P(+q∪−q)

)
;

3. for p ∈ P, f (p′) = +pu
(d

q∈P,q6=p(+q∪−q)
)

;

4. for p ∈ P, f (¬p′) =−pu
(d

q∈P,q6=p(+q∪−q)
)

;

5. f (β ∧ γ) = f (β)u f (γ);
6. f (β ∨ γ) = f (β)∪ f (γ).
Items 1–4 take care of the fact that there is no implicit persis-
tency of values in NNFAT. Then it is easy to show by induc-
tion that f is indeed a translation from NNFAT to NPDDL.
In particular, Case 5 works despite the different semantics of
∧ andu because (by induction) all effects are explicit in both
f (β) and f (γ), so that u acts as ∧ in this precise translation.
Case 6 works despite the fact that ∨ is inclusive but ∪ is not
because the effects brought about by β and γ are by defini-
tion brought about by, say, β alone and hence, by induction,
by f (β) alone, so that ∪ acts as ∨ in this translation.

Since f rewrites each node of α independently of the oth-
ers, it is polynomial-time both when applied to an expression
in T-NNFAT (with a result in T-NPDDL) and to an expres-
sion in C-NNFAT (with a result in C-NPDDL). �

Complexity of Queries
We now turn to studying the complexity of queries to ex-
pressions. We concentrate on three natural queries for plan-
ning, corresponding to checking the existence of a transition,
deciding applicability of an action, and deciding whether a
(sequential) plan reaches a goal. Let 〈L, I〉 be a fixed ac-
tion language, and let α,α1, . . . ,αk denote expressions in
L, P ⊆ P denote a set of variables such that I(α,P) and
I(α1,P), . . . , I(αk,P) are defined, and s,s′ denote P-states.
Definition 15 (IS-SUCC). The decision problem IS-SUCC
takes as input α,P,s,s′, and asks whether s′ ∈ α(s).
Definition 16 (IS-APPLIC). The decision problem
IS-APPLIC takes as input α,P,s, and asks whether α(s) 6= /0.
Definition 17 (ENTAILS). The decision problem ENTAILS
takes as input α1, . . . ,αk,P,s, and an NNF formula ϕ over P,
and asks whether s′ satisfies ϕ for all s′ ∈ (α1; . . . ;αk)(s).

It is important to note that if s has no successor through
α1; . . . ;αk, then it entails any formula ϕ .

It turns out that the query IS-SUCC is central, hence we
start with it.
Proposition 18. IS-SUCC can be solved in linear time for
T-NNFAT and C-NNFAT.

PROOF. By definition of NNFAT, s′ ∈ α(s) holds if and
only if the assignment to P∪{p′ | p ∈ P} induced by s,s′
satisfies α , which can be decided by replacing each leaf in
the representation of α by its value in s or s′, then evaluating
α in a bottom-up fashion. Clearly, this can be done in linear
time for both tree and circuit representations. �

Proposition 19. IS-SUCC is in NP for T-NPDDLseq.

PROOF. We define a witness for a positive instance to be
composed of either β or γ for each subexpression β ∪ γ of
α . Such a witness is clearly of polynomial size, and verify-
ing it amounts to deciding successorship for a deterministic
NPDDLseq description, which is clearly doable in polyno-
mial time by simulating the (only) execution. �

For hardness, we first define an encoding of a 3-CNF for-
mula ϕ over n variables as an assignment to polynomially
many state variables.
Notation 20. Let n ∈ N, and let Xn = {x1, . . . ,xn} be a set
of variables. Observe that there are a cubic number Nn of
clauses of length 3 over Xn. We fix an arbitrary enumeration
γ1,γ2, . . . ,γNn of all these clauses, and we define Pn⊂P to be
the set of state variables {p1, p2, . . . , pNn}. Write ` ∈ γi if the
literal ` occurs in the clause γi. Then to any 3-CNF formula
ϕ we associate the Pn-state s(ϕ) = {pi | i ∈ {1, . . . ,Nn},γi ∈
ϕ}, and dually, to any Pn-state s, we associate the 3-CNF
formula over Xn, written ϕ(s), which contains exactly those
clauses γi for which pi ∈ s holds.
Example 21. Consider an enumeration of all clauses over
X2 = {x1,x2}which starts with γ1 = (x1∨x1∨x2),γ2 = (x1∨
x1∨¬x2),γ3 = (x1∨¬x1∨x2), . . .Then the 3-CNF ϕ = (x1∨
x1∨ x2)∧ (x1∨¬x1∨ x2) is encoded by s(ϕ) = {p1, p3}.
Proposition 22. IS-SUCC is NP-hard for NSTRIPS.

312

PROOF. We give a reduction from 3-SAT. Let ϕ be a 3-CNF
formula over variables x1, . . . ,xn and containing (w.l.o.g.)
the clauses γ1, . . . ,γk (encoded by p1, . . . , pk). We define

α :=
l

xi

>B((l

γ j∈ϕ : xi∈γ j

+p j
)
∪
(l

γ j∈ϕ : ¬xi∈γ j

+p j
))

Clearly, α is a polynomial-time constructible NSTRIPS
expression. We claim that the state {p1, . . . , pk} is an α-
successor of /0 if and only if ϕ is satisfiable. Indeed, α can be
seen as deciding nondeterministically, for every variable xi,
whether to set it true or false, and then setting p j true for all
γ j which are satisfied by the chosen value. Thus, if all p j’s
have been set to true, all clauses are satisfied by the chosen
assignment to the xi’s, and hence ϕ is satisfiable. Conversely,
if ϕ is satisfiable, then there exists a consistent choice of lit-
erals `1, . . . , `n which satisfies all γ j’s. Then the execution of
α which, for each xi, chooses the left or the right side of the
∪ choice according to the polarity of `i, indeed witnesses
that {p1, . . . , pk} is an α-successor of /0. �

As NSTRIPS is a sublanguage of NPDDL and NPDDLseq,
using Propositions 19 and 22 we get:

Corollary 23. IS-SUCC is NP-complete for NSTRIPS,
T-NPDDL, and T-NPDDLseq.

IS-SUCC is NP-complete for C-NPDDL as well:

Proposition 24. IS-SUCC is NP-complete for C-NPDDL.

PROOF. Hardness follows from Corollary 23, since
NSTRIPS is a sublanguage of C-NPDDL. For membership,
the intuition is to guess a branch to be chosen for each ∪-
node in the circuit as in the proof of Proposition 19. How-
ever, in circuits, a ∪-node might have exponentially many
paths from the root to it, inducing parallel executions, and in
each of these a new child may be chosen.2

For that reason, we define a witness of s′ ∈ α(s) to be the
number of times each node in the circuit is executed along
an execution of α leading from s to s′. Hence a witness is a
labelling of each node and edge in the circuit by a number
in [0..2|α|] (using O(|α|) bits per node). We then claim that
such a labelling is indeed a witness that s′ ∈ α(s) holds, if
and only if the following six conditions hold:

1. the root is labelled with 1,
2. each edge out of a u-node has the same label as its source,
3. the labels of the edges out of a ∪-node sum up to the label

of their source,
4. the edge from a B-node α of the form (ϕBβ) to node β

has the same label as α if s satisfies ϕ , and 0 otherwise,
5. the label of each node is the sum of the labels of the edges

pointing to it,
6. the action `1 u ·· · u `k, where `1, . . . , `k are those leaves

of the circuit (that is, elementary assignments ±p) whose
label is nonzero, maps s to s′ (in particular, these assign-
ments are consistent together).

2For instance, the bottom left ∪ node in the expression of Fig-
ure 1 (right) is executed twice along any execution of the action.

Clearly, this can be verified in polynomial time. Now it can
be checked by induction that a labelling of the circuit of α

is correct, as defined by Items 1–5 above, if and only if the
action `1u·· ·u `k of Item 6 is a valid execution of α , which
concludes the proof. �

The proof of Proposition 24 relies on the fact that there
is no sequence operator in C-NPDDL, and hence that when
a node is executed several times, the order does not matter.
For this reason, it cannot be generalized to C-NPDDLseq.
Proposition 25. IS-SUCC is PSPACE-complete for
C-NPDDLseq.

PROOF. For membership, observe that we can simulate all
possible executions (induced by nondeterministic choices)
of the circuit in polynomial space, and simply decide
whether one witnesses that s′ is a successor of s.

Now for hardness, we give a reduction from the prob-
lem of deciding the validity of a QBF of the form Φ =
∃p1∀p2∃p3∀p4 . . .∃p2n−1∀p2n : ϕ , where ϕ is a 3-CNF for-
mula. Given such a QBF, let psat ∈ P be a fresh variable,
define αn to be the NPDDLseq expression ¬ϕ B−psat, and
for i = n−1, . . . ,0, define αi to be

(+p2i+1∪−p2i+1) ;+p2i+2 ; αi+1 ;−p2i+2 ; αi+1;−p2i+1

Clearly, α0 has a circuit of size polynomial in ϕ (e.g., Fig. 1
(right) depicts α0 for n = 2).

Intuitively, the action guesses a value for p2i+1, then ver-
ifies that together with p2i+2 set to true, the nested formula
αi+1 is valid, then that together with p2i+2 set to false in-
stead, αi+1 is again valid, and finally resets p2i+1 to false.
Then it can be shown that the reduction is correct, using in-
duction on i = n,n−1, . . . ,0 with the following hypothesis:

for all literals `1, . . . , `2i over p1, . . . , p2i, respec-
tively, the state s = {psat} ∪ {p j | ` j = p j} is
an αi-successor of itself if and only if Φi :=
∃p2i+1∀p2i+2 . . .∃p2n−1∀p2nϕ|`1,...,`2i is valid,

where ϕ|`1,...,`2i denotes propositional conditioning, that is,
ϕ with the occurrences of p1, . . . , p2i replaced by their value
and simplified. In the end, we obtain that s = {psat} is an α0-
successor of itself if and only if Φ0 is valid, which concludes
the proof since by construction we have Φ0 = Φ. �

We now turn to the query IS-APPLIC.
Proposition 26. IS-APPLIC is NP-complete for T-NNFAT
and C-NNFAT.

PROOF. Membership is clear, because applicability of α in s
can be justified by giving a successor, which can be verified
in linear time for both T-NNFAT and C-NNFAT by Propo-
sition 18. For hardness, let ϕ be a propositional formula over
variables p1, . . . , pn, and let α be the T-NNFAT expression
obtained from ϕ by replacing each pi with p′i. Then clearly,
α is applicable in any state (say in s = /0) if and only if ϕ

is satisfiable. Hence IS-APPLIC is NP-hard for T-NNFAT,
and clearly this entails NP-hardness for C-NNFAT also. �

For a state s let ψs denote the formula (
∧

p∈s p)∧ (
∧

p/∈s¬p).
Lemma 27. IS-SUCC is polynomial-time reducible to
IS-APPLIC for T-NPDDLseq and C-NPDDLseq.

313

PROOF. Let α be a (tree- or circuit) NPDDLseq action. For
all states s,s′ we have s′ ∈ α(s) if and only if α ; (¬ψs′ B⊥)
is applicable in s. �

Corollary 28. IS-APPLIC is NP-complete for NSTRIPS,
T-NPDDL, C-NPDDL, and T-NPDDLseq, and it is
PSPACE-complete for C-NPDDLseq.

PROOF. For NPDDLseq hardness follows from Lemma 27
together with the previous results about IS-SUCC. For
NSTRIPS: a 3-CNF ϕ is satisfiable if and only if the
NSTRIPS action αϕ is applicable in s = /0, where αϕ is
obtained by replacing every p in ϕ by +p, ¬p by −p, ∨
by ∪, ∧ by u and by inserting a >B before every former
3-clause (e.g. the 3-CNF (p1 ∨¬p2 ∨¬p3)∧ (p1 ∨ p2 ∨ p3)
over variables {p1, p2, p3, p4} would become (>B (+p1 ∪
−p2∪−p3))u (>B (+p1∪+p2∪+p3))). For membership
in NP, since IS-SUCC is in NP for all these languages, it suf-
fices to define a witness for IS-APPLIC with input α,s, to be
a successor s′ together with a witness for s′ ∈ α(s). Finally,
for membership in PSPACE, it suffices to guess a successor
and verify it in polynomial space (Proposition 25). �

We finally turn to the query ENTAILS.
Proposition 29. ENTAILS is coNP-complete for T-NNFAT,
C-NNFAT, NSTRIPS, T-NPDDL, C-NPDDL, and
T-NPDDLseq. Hardness holds even if the input sequence is
restricted to contain only one action.

PROOF. For membership, recall that deciding successorship
is in NP for all the languages. Fix a language L. Suppose
we are given a state s, a formula ϕ , and L-actions α1, . . . ,αk.
To show that the given sequence of actions does not entail
ϕ it is enough to guess a sequence of states s1,s2, . . .sk with
s1 ∈ α1(s),s2 ∈ α2(s1), . . . ,sk ∈ αk(sk−1), and sk 6|= ϕ , and
guess the corresponding certificates for si ∈ αi(si−1). Then
the non-entailment can be verified in polynomial time.

For hardness, fix P = {p1, . . . , pn}. Observe that all lan-
guages can encode the “omnipotent” action a (∀s,a(s) :=
2P) efficiently, either by α = p′1 ∨¬p′1 (for NNFAT) or by
α =

d
p∈P(+p∪−p). Now let ϕ be a 3-CNF formula over

P. Then ϕ is not satisfiable if and only if all assignments to
P satisfy ¬ϕ , which amounts to all α-successors of an ar-
bitrary state (say s = /0) satisfying ¬ϕ , which is indeed an
entailment problem with a single action. �

Proposition 30. ENTAILS is PSPACE-complete for
C-NPDDLseq.

PROOF. Suppose we are given a state s ⊆ P, a for-
mula ϕ over P = {p1, . . . , pn}, and α1 ; . . . ; αk with αi
in C-NPDDLseq. PSPACE-membership is obvious for the
same reason as for IS-SUCC: we simulate every execution of
α1 ; . . . ; αk (each time using a polynomial amount of space)
and check whether the resulting state satisfies ϕ . Now we
recall that if a state has no successors through α then it en-
tails any formula ϕ . Hardness follows from a reduction of
the complement of IS-APPLIC to ENTAILS: α is not appli-
cable in s if and only if α ;−p1 entails ϕ in s, with ϕ := p1.
Indeed, if α is applicable in s, then α ;−p1 leads to at least
one state s′ with p1 /∈ s′, while if it not applicable in s, then
all its successors (vacuously) satisfy ϕ . �

Succinctness
We now give negative results about the existence of
polynomial-size translations, hence about the relative suc-
cinctness of languages (Darwiche and Marquis 2002). Re-
call that all the languages which we study are complete.

Our separation results use the nonuniform complexity
class P/poly of all decision problems such that for all n ∈
N, there is a polynomial-time algorithm which decides the
problem for all inputs of size n (Arora and Barak 2009). The
assumption NP 6⊆ P/poly which we use is a standard one; in
particular, NP⊆ P/poly would imply a collapse of the poly-
nomial hierarchy at the second level (Karp-Lipton theorem).

We start with NPDDL and NNFAT. Using Notation 20,
for all n ∈ N we define the NPDDL (but not NSTRIPS)
expression αsat

n by

α
sat
n =

l

x∈Xn

 (l

γi : x∈γi

(+pi∪ ε)
) ∪ (l

γi : ¬x∈γi

(+pi∪ ε)
) 

Intuitively, αsat
n chooses an assignment (true or false) to each

variable in Xn (outermost ∪). Whenever it chooses an assign-
ment for x, for each possible clause which is satisfied by this
assignment (innermost u), it chooses whether to include this
clause into the result, or not(innermost ∪). Hence it builds a
formula which is satisfied at least by its choices, and clearly,
any satisfiable 3-CNF formula can be built in this manner.
Lemma 31. Let n ∈ N, and let ϕ be a 3-CNF formula
over Xn. Then ϕ is satisfiable if and only if s(ϕ) is an αsat

n -
successor of the state /0.
Proposition 32. There is no polynomial-size translation
from T-NPDDL to T-NNFAT, nor from C-NPDDL to
C-NNFAT, unless NP⊆ P/poly holds.
PROOF. The size of αsat

n is clearly polynomial in n
in both the tree and circuit representations. Assume that
there is a polynomial-size translation f from T-NPDDL to
T-NNFAT, and for all n∈N let β sat

n = f (αsat
n). Then the fol-

lowing is a nonuniform polynomial time algorithm for the
3-SAT problem; given a 3-CNF ϕ :

1. encode ϕ into a state s(ϕ) as in Notation 20;
2. decide whether s(ϕ) is a β sat

n -successor of the state /0;
3. if yes, claim that ϕ is satisfiable, otherwise unsatisfiable.
All steps are polynomial-time (Proposition 18), the algo-
rithm is correct (Lemma 31), and it depends only on the
number of variables in ϕ (which is polynomially related to
its size), hence this is indeed a nonuniform polynomial time
algorithm for 3-SAT. Hence NP⊆ P/poly holds.

The proof is exactly the same for circuits. �
Before proceeding to show that NPDDLseq is strictly

more succinct than NPDDL, we need the following techni-
cal result about restricting an action to pairs of states 〈s,s′〉
which satisfy a given assignment to a subset of the variables.
Lemma 33. Let P and Q be disjoint sets of variables, and
α be a T-NPDDL (resp. C-NPDDL) expression for a (P∪
Q)-action. Let t ⊆ Q be an assignment to the variables in
Q. Then we can compute a T-NPDDL (resp. C-NPDDL)
expression α|t for a P-action which satisfies α|t(s) = {s′ \ t |
s′ ∈ α(s∪ t),s′∩Q = t} in time polynomial in |α|.

314

Query NSTRIPS T-NNFAT C-NNFAT T-NPDDL C-NPDDL T-NPDDLseq C-NPDDLseq
IS-SUCC NP-cpl. lin. time lin. time NP-cpl. NP-cpl. NP-cpl. PSPACE-cpl.
IS-APPLIC NP-cpl. NP-cpl. NP-cpl. NP-cpl. NP-cpl. NP-cpl. PSPACE-cpl.
ENTAILS coNP-cpl. coNP-cpl. coNP-cpl. coNP-cpl. coNP-cpl. coNP-cpl. PSPACE-cpl.

Table 1: Summary of the complexity results for the queries. The languages (except NSTRIPS) are ordered according to their
succinctness, i.e. the tree (circuit) representation of a language on the left is strictly less succinct than the tree (circuit) repre-
sentation of a language on the right. We do not compare succincntess of tree and circuit representations.

PROOF. Simply replace all leaves of the form +q with q ∈
Q∩ t by ε , all leaves of the form +q with q ∈ Q \ t by ⊥
(failure), and dually for −q, and for all subexpressions ϕB
β , simplify ϕ by the assignment t to Q. �

Proposition 34. There is no polynomial-size translation
from T-NPDDLseq to T-NPDDL, nor from C-NPDDLseq
to C-NPDDL, unless NP⊆ P/poly holds.

PROOF. Let n∈N, and let ϕ be a 3-CNF formula over a set
of variables {pϕ

1 , . . . , pϕ
n } ⊆P. Recall from Notation 20 that

we can encode ϕ over a set Pn ⊆ P (we assume w.l.o.g.Pn∩
{pϕ

1 , . . . , pϕ
n } = /0). Finally, let psat ∈ P be a fresh variable.

We define γsat
n to be the following NPDDLseq expression:

nl

i=1

(+pϕ

i ∪−pϕ

i);(ψnB+psat)u (¬ψnB−psat);
nl

i=1

−pϕ

i

where ψn is the NNF
∧Nn

i=1(¬pi∨
∨

`∈γi
`), which is satisfied

if and only if each clause γi which is in ϕ (as witnessed by
pi being true) is also satisfied. In words, γsat

n guesses an as-
signment to V(ϕ), then sets psat according to whether ϕ is
satisfied by this assignment, and finally resets all guessed
variables to false. Note that γsat

n depends on n but not on ϕ ,
and that γsat

n is polynomial in n.
Clearly, s(ϕ)∪ {psat} is a γsat

n -successor of s(ϕ) if and
only if ϕ is satisfiable. Hence the following decision prob-
lem is NP-hard:
• Input: a 3-CNF formula ϕ

• Question: is s(ϕ)∪{psat} a γsat
n -successor of s(ϕ)?

Now assume that there is a polynomial-size translation f
from T-NPDDLseq to T-NPDDL. Fix n ∈ N, and let δ sat

n =
f (γsat

n). Let ϕ be a 3-CNF formula. Since δ sat
n is in NPDDL,

we can apply Lemma 33 with Q = Pn ∪ {pϕ

1 , . . . , pϕ
n } and

t = s(ϕ), to get an expression in which the only occuring
variable is psat, and {psat} is a successor of /0 if and only if
s(ϕ)∪{psat} is a δ sat

n -sucessor of s(ϕ), that is, if and only
if ϕ is satisfiable. Now since this expression has only one
variable, it is easy to see that successorship can be decided
in polynomial time, implying NP⊆ P/poly.

The proof is exactly the same for circuits. �

Conclusion
We studied several languages for describing nondeterminis-
tic actions along two criteria: succinctness and complexity of
different decision problems natural to automated planning.
We also considered two representations, by trees and by cir-
cuits. Our results are summarized in Table 1, where we have

ordered languages with respect to their relative succinctness
(we emphasize that we did not study the relative succinct-
ness of two representations of the same language).

One conclusion is that converting an NPDDL specifica-
tion into an NNFAT representation necessarily yields an
explosion in some cases. Hence it can be worth develop-
ing planners which tackle directly the PDDL specification
(Lesner and Zanuttini (2011) proposes one for the stochastic
case), or, dually, to ask the experts to specify actions directly
in NNFAT, so as to avoid the conversion. The latter may in-
deed make sense in some settings, since NNFAT can be seen
as a declarative language (it is easy to specify that the action
sets p1 to the same value as p2, for instance), quite comple-
mentary to PDDL, which is more “imperative”.

Also interesting is the different complexity of queries for
NPDDLseq with trees or circuits. While it is intuitively clear
that there must be some languages which are strictly less
compact with trees than with circuits, and languages with
less tractable queries with circuits than with trees, this gives
a concrete example of this phenomenon. Finally, it is inter-
esting that the complexity of the three queries is the same
for tree-represented NPDDL with or without sequence. This
means that as far as these queries are concerned, one can
let an expert use the richer language for specifying actions,
and a solver can just compile away sequence operators effi-
ciently and work with plain NPDDL, as if the specification
was constrained to be in this language.

Our picture is almost complete for the languages which
we studied: we only leave open the relative succinctness of
NSTRIPS and NNFAT on the one hand, and NSTRIPS and
NPDDL on the other hand. Our main perspective is a more
systematic study, for languages constructed using combi-
nations of features like the sequence operator, modalities,
Kleene star, etc. A very expressive language to consider is
DL-PPA (Herzig, Maris, and Vianey 2019). Another per-
spective is to consider languages for stochastic actions, and
for actions with observations (and hence queries on belief
states rather than states). We are also interested in studying
the complexity of other queries, e.g. counting and enumer-
ating successors or randomly generating a successor state.
The ultimate goal is to draw clear pictures of what language
to choose depending on the queries which are used by, e.g.,
a planning algorithm or a simulator.

Acknowledgements
This work has been supported by the French National Re-
search Agency (ANR) through project PING/ACK (ANR-
18-CE40-0011).

315

References
Albore, A.; Palacios, H.; and Geffner, H. 2010. Compiling
Uncertainty Away in Non-Deterministic Conformant Plan-
ning. In Proc. 19th European Conference on Artificial Intel-
ligence (ECAI 2010), volume 215, 465–470.

Alford, R.; Kuter, U.; and Nau, D. 2009. Translating HTNs
to PDDL: A small amount of domain knowledge can go a
long way. In Proc. 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), 1629–1634.

Arora, S.; and Barak, B. 2009. Computational complexity:
a modern approach. Cambridge University Press.

Bäckström, C.; and Jonsson, P. 2012. Algorithms and Lim-
its for Compact Plan Representations. Journal of Artificial
Intelligence Research 44: 141–177.

Balbiani, P.; Herzig, A.; and Troquard, N. 2013. Dynamic
logic of propositional assignments: a well-behaved variant
of PDL. In Proc. 28th Annual ACM/IEEE Symposium on
Logic in Computer Science (LiCS 2013), 143–152.

Bertoli, P.; Cimatti, A.; Dal Lago, U.; and Pistore, M. 2003.
Extending PDDL to nondeterminism, limited sensing and it-
erative conditional plans. In Proc. ICAPS 2003 Workshop on
PDDL.

Bryant, R. E. 1992. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Computing Surveys
(CSUR) 24(3): 293–318.

Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning Graph Heuristics for Belief Space Search. Journal of
Artificial Intelligence Research 26: 35–99.

Cimatti, A.; and Roveri, M. 2000. Conformant Planning via
Symbolic Model Checking. Journal of Artificial Intelligence
Research 13: 305–338.

Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Auto-
matic OBDD-based generation of universal plans in non-
deterministic domains. In Proc. 15th National Conference
on Artificial Intelligence (AAAI 1998), 875–881.

Darwiche, A.; and Marquis, P. 2002. A knowledge compi-
lation map. Journal of Artificial Intelligence Research 17:
229–264.

Fox, M.; and Long, D. 2002. The Third International Plan-
ning Competition: Temporal and Metric Planning. In Proc.
6th International Conference on Artificial Intelligence Plan-
ning Systems (AIPS 2002), 333–335.

Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20: 61–124.

Geffner, H.; and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool Publishers.

Geffner, T.; and Geffner, H. 2018. Compact Policies for
Fully Observable Non-Deterministic Planning as SAT. In
Proc. 28th International Conference on Automated Planning
and Scheduling (ICAPS 2018), 88–96.

Herzig, A.; Maris, F.; and Vianey, J. 2019. Dynamic logic
of parallel propositional assignments and its applications to
planning. In Proc. 28th International Joint Conference on
Artificial Intelligence (IJCAI 2019), 5576–5582.
Lesner, B.; and Zanuttini, B. 2011. Efficient Policy Con-
struction for MDPs Represented in Probabilistic PDDL. In
Proc. 21st International Conference on Automated Planning
and Scheduling (ICAPS 2011).
McDermott, D. 1998. PDDL–the planning domain defi-
nition language. Technical Report CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Con-
trol. Available at: www.cs.yale.edu/homes/dvm (consulted
on 2020/03/16).
Muise, C. J.; McIlraith, S. A.; and Belle, V. 2014. Non-
Deterministic Planning With Conditional Effects. In Proc.
24th International Conference on Automated Planning and
Scheduling (ICAPS 2014), 370–374.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research 12: 271–315.
Reiter, R. 1991. The frame problem in the situation calculus:
A simple solution (sometimes) and a completeness result for
goal regression. In Lifschitz, V., ed., Artificial intelligence
and mathematical theory of computation: papers in honor
of John McCarthy, 359–380. Academic Press Professional.
Rintanen, J. 2004. Complexity of Planning with Partial Ob-
servability. In Proc. 14th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2004), 345–354.
To, S. T.; Son, T. C.; and Pontelli, E. 2015. A generic ap-
proach to planning in the presence of incomplete informa-
tion: Theory and implementation. Artificial Intelligence 227:
1–51.

316

