
Representing CSPs with Set-labeled Diagrams:
A Compilation Map

Alexandre Niveau1, Hélène Fargier2, and Cédric Pralet3

1 CRIL/Université d’Artois, Lens, France
niveau@cril.fr

2 IRIT/CNRS, Toulouse, France
fargier@irit.fr

3 Onera/DCSD, Toulouse, France
cedric.pralet@onera.fr

Abstract. Constraint Satisfaction Problems (CSPs) offer a powerful framework
for representing a great variety of problems. Unfortunately, most of the oper-
ations associated with CSPs are NP-hard. As some of these operations must be
addressed online, compilation structures for CSPs have been proposed, e.g. finite-
state automata and Multivalued Decision Diagrams (MDDs).
The aim of this paper is to draw a compilation map of these structures. We cast
all of them as fragments of a more general framework that we call Set-labeled
Diagrams (SDs), as they are rooted, directed acyclic graphs with variable-labeled
nodes and set-labeled edges; contrary to MDDs and Binary Decision Diagrams,
SDs are not required to be deterministic (the sets labeling the edges going out of
a node are not necessarily disjoint), ordered nor even read-once.
We study the relative succinctness of different subclasses of SDs, as well as the
complexity of classically considered queries and transformations. We show that
a particular subset of SDs, satisfying a focusing property, has theoretical capa-
bilities very close to those of Decomposable Negation Normal Forms (DNNFs),
although they do not satisfy the decomposability property stricto sensu.

1 Introduction

Constraint Satisfaction Problems (CSPs) [RBW06] offer a powerful framework for rep-
resenting a great variety of problems, e.g. planning or configuration problems. Different
kinds of operations can be posted on a CSP, such as extraction of a solution (the most
classical query), strong consistency of the domains, addition or retraction of new con-
straints (dynamic CSP), counting of the number of solutions, and even combinations
of these operations. For instance, the interactive solving of a configuration problem
amounts to a series of (unary) constraints additions and retractions while maintaining
the strong consistency of the domains, i.e. each value in a domain is involved in at least
one solution.

Most of these operations are NP-hard, but must sometimes be addressed online. A
possible way of solving this contradiction is to use knowledge compilation, which con-
sists in transforming the problem offline in such a way that its online resolution becomes
tractable. As a matter of fact, Multivalued Decision Diagrams (MDDs) [SKMB90,

Vem92, KVBSV98, AHHT07] have been proposed as a way to “compile” CSPs, and
successfully used in product configuration [AFM02]. Figure 1 shows how an MDD can
represent the set of solutions of a CSP.

x1 x2

x2

x2

x3

x3

x3

x1

x2 x36=

6= 6= 1

2

3

2

3

1

3

2

3

2

1

1

Fig. 1. This figure shows the constraint graph (on the left) of the 3-coloring problem (the domain
of the variables is {1, 2, 3}), and an MDD (on the right) representing the set of solutions of this
CSP.

In the present paper, we investigate this landscape by capturing these existing com-
pilation structures as subsets of a more general framework called “set-labeled dia-
grams”. The latter also covers new structures relaxing the requirements of determin-
ism and ordering, which, as we show, can lead to exponentially more compact graphs
without losing much in efficiency. In particular, we identify a subset of set-labeled di-
agrams that has theoretical capabilities very close to those of DNNFs (Decomposable
Negation Normal Forms) [DM02], although it does not satisfy decomposability stricto
sensu. Moreover, while most of the operations considered in classical knowledge com-
pilation maps deal with reasoning problems, we introduce in the present map a few
new operations, that are motivated by the use of the CSP framework for some more
decision-oriented applications, such as planning and configuration. Proofs are gathered
in Appendix A and B.

x

y
z

y

z(2)
z

x(3)

∨
x

y(1)

y(1)

{3, 4}

{1}{0}
{0}

{0, 1, . . . 8} {0, 1, . . . , 10}

{15}(5)
{7, 8}

{2, 7}
{3}(4)

{6}(4) {1}

{1, 4}

{1}{1, 3, 6}
{0}

{0}

Fig. 2. An example of non-reduced SD. Variable domains are all {0, 1, . . . , 10}. The two nodes
marked (1) are isomorphic; node (2) is stammering; node (3) is undecisive; the edges marked (4)

are contiguous; edge (5) is dead.

2 Set-labeled Diagrams

Let us first formally define set-labeled diagrams, their interpretation, and their place
among other knowledge compilation languages.

2.1 Structure and Semantics

The definition of set-labeled diagrams is similar to the one of classical decision diagram
structures:

Definition 2.1 (Set-labeled diagram). A set-labeled diagram (SD) is a couple φ =
〈X,Γ 〉, with

– X (also denoted Var(φ)) a finite and totally ordered set of variables whose domains
are finite sets of integers;

– Γ a directed acyclic graph4 with at most one root and at most one leaf (the sink).
Non-leaf nodes are labeled by a variable ofX or by the disjunctive symbol Y. Each
edge is labeled by a finite subset of N.

This definition allows the graph to be empty (no node at all, only case when there is not
exactly one root and one leaf) or to contain only one node (together root and sink). It
does not prevent edges’ labels to be empty, and ensures that every edge belongs to at
least one path from the root to the sink. Figure 2 gives an example of SD.

W will know introduce useful notations: For x ∈ X , Dom(x) ⊆ N denotes the
domain of x. By convention, Dom(Y) = {0}. For Y = {y1, . . . , yk} ⊆ X , such that
the yi are sorted in ascending order, Dom(Y) denotes Dom(y1)× · · · ×Dom(yk), and
~y denotes a Y -assignment of variables from Y , i.e. ~y ∈ Dom(Y). When Y ∩ Z = ∅,
~y.~z is the concatenation of ~y and ~z. Last, ~y(yi) denotes the value assigned to yi in ~y (by
convention, ~y(Y) = 0). Let φ = 〈X,Γ 〉 be a set-labeled diagram, N a node and E an
edge in Γ ; let us use the following notations:

– Root(φ) the root of Γ and Sink(φ) its sink;
– |φ| the size of φ, i.e. the sum of the cardinalities of all labels in φ plus the cardinal-

ities of the variables’ domains;
– Outφ(N) (resp. Inφ(N)) the set of outgoing (resp. incoming) edges of N ;
– Varφ(N) the variable labeling N (not defined for Sink(φ));
– Srcφ(E) the node from which E comes and Dest(E) the node to which E points;
– Lblφ(E) the set labeling E;
– Varφ(E) = Varφ(Src(E)) the variable associated to E.

We shall drop the φ subscript whenever there is no ambiguity.
An SD can be seen as a compact representation of a Boolean function over discrete

variables. This function is the interpretation function of the set-labeled diagram:

4 Actually, depending on the definition Γ may not strictly be a graph, but rather a multigraph,
since we allow two edges to go in parallel from one node to another (see e.g. Figure 2): the set
of edges is a subset of N ×N × 2N, N being the set of nodes.

x∨(ND)

z(2
′)

z

y(1
′)

x(ND)

y

y

{2, 7}

{0}

{3, 6}(4′)

{1}

{0, 1, . . . , 8}

{1}(NF)

{7, 8}(†)
{1, 4}

{1, 3, 6}
{0}

{0}

{3, 4}

Fig. 3. In this SD, all edges are focusing but the one marked (NF) (it is not included in the one
marked (†)), and all nodes are deterministic but the ones marked (ND). This SD is the reduced
form of the SD presented in Figure 2: isomorphic nodes marked (1) have been merged into node
(1′), stammering node (2) has been collapsed into node (2′), contiguous edges marked (4) have
been merged into edge (4′), and undecisive node (3) and dead edge (5) have been removed.

Definition 2.2 (Semantics of a set-labeled diagram). A set-labeled diagram φ on
X = Var(φ) represents a function I(φ) from Dom(X) to {>,⊥}, called the interpre-
tation function of φ, and defined as follows: for a given X-assignment ~x, I(φ)(~x) = >
if and only if there exists a path p from the root to the sink of φ such that for each edge
E along p, ~x(Var(E)) ∈ Lbl(E).

We say that ~x is a model of φ whenever I(φ)(~x) = >. Mod(φ) denotes the set of
models of φ.

φ is said to be equivalent to another SD ψ (denoted φ ≡ ψ) iff Mod(φ) = Mod(ψ).

Note that the interpretation function of the empty SD always returns⊥, since it contains
no path from the root to the sink. Conversely, the interpretation function of the one-node
SD always returns >, since in the one-node SD, the only path from the root to the sink
contains no edge.

From these two definitions it follows that SDs are strongly related to ordered bi-
nary decision diagrams [Bry86] and multivalued decision diagrams [SKMB90, Vem92,
APV99, AHHT07] as a way to represent a set of assignments of discrete variables (or
typically, the set of solutions of a CSP). They actually generalize these data structures
twofold. First, there is no restriction on the order in which the variables are encountered
along a path, and variables can be repeated along a path. Second, SDs are not necessar-
ily deterministic: the sets labeling edges going out of a node are not due to be pairwise
disjoint, and thus a single model can be captured by several paths. SDs even support
pure non-deterministic “OR” nodes (the Y-nodes) that allow the unrestricted union of
several subgraphs. Putting away these two restrictions is valuable both theoretically,
to generalize a large class of data structures, and practically, since SDs can be more
compact than their ordered and deterministic variants (see Section 3.1). Let us define
determinism formally and then introduce useful concepts.

Definition 2.3 (Deterministic set-labeled diagrams). A node N in a set-labeled dia-
gram φ is deterministic if the sets labeling its outgoing edges are pairwise disjoint.

A deterministic set-labeled diagram (dSD) is an SD containing only deterministic
nodes.

The notion of determinism is illustrated on Figure 3.

Definition 2.4 (Consistency, validity, context). Let φ be a set-labeled diagram on X .

φ is said to be consistent (resp. valid) if and only if Mod(φ) 6= ∅ (resp. Mod(φ) =
Dom(X)).

A value v ∈ N is said to be consistent for a variable y ∈ X in φ if and only if there
exists an X-assignment ~x in Mod(φ) such that ~x(y) = v.

The set of all consistent values for y in φ is called the context of y in φ and denoted
Ctxtφ(y).

x

x

zz

y

x

y

{3, 5}
{7, 8, 10} {0, 1}

{2, 3, 9}

{0, 2}

{8, 9} {8, 10}
{1, 6, 7}
{1, 2, 3}

{1, 3, 6}

Fig. 4. Before an SD is proven inconsistent, every path must be checked. Here is an example of
SD whose every path is inconsistent.

We will see in the following that deciding whether an SD is consistent is not tractable.
One of the reasons is that the sets restricting a variable along a path can be conflicting,
hence in the worst case all paths must be explored before a consistent one is found.
Figure 4 shows an example of SD with no consistent path at all. To avoid this, we will
consider SDs in which labeling sets can only shrink from the root to the sink, thus
preventing conflicts:

Definition 2.5 (Focusing set-labeled diagrams). A focusing edge in a set-labeled di-
agram φ is an edge E such that all edges E′ on a path from the root of φ to Src(E)
such that Var(E) = Var(E′) verify Lbl(E) ⊆ Lbl(E′).

A focusing set-labeled diagram (FSD) is an SD containing only focusing edges.

The notion of focusing edge is illustrated in Figure 3. It is sufficient for the con-
sistency query to be polynomial, but for some other operations (such as obtaining the
conjunction of two SDs), a stricter restriction is necessary. An interesting one, very
common in knowledge compilation, is to impose an order on the variables encountered
along the paths; applying to SDs, we recover Multivalued Decision Diagrams (MDDs)
in their practical acception5 [SKMB90, Vem92, AHHT07].

Definition 2.6 (Ordered diagrams). Let < be a total order on the variables of X . A
set-labeled diagram is said to be ordered w.r.t. < iff, for any two nodes N and M , if N
is an ancestor of M then Var(N) < Var(M).

A dSD ordered w.r.t. < is called an MDD<. The language MDD is the union of all
MDD< languages.6

5 The original definition of MDDs does not require determinism, nor introduces an order on the
variables. Nevertheless, the papers resorting to these structures work only with ordered and
deterministic MDDs; that is why we abusively designate ordered dSDs as MDDs.

6 A language is a set of graph structures, fitted up with an interpretation function. We denote SD
the language of SDs, dSD the language of dSDs, and so on.

Obviously, if there are not two occurrences of the same variable in a path, all edges
are focusing. Hence: MDD< ⊆ MDD ⊆ dFSD ⊆ FSD ⊆ SD and dFSD ⊆ dSD ⊆ SD.
We will study in the next sections the main properties of the SD family, and their rela-
tionships with classical Boolean decision diagrams. But before that, let us show how to
reduce an SD in order to make it as compact as possible — and save space.

2.2 Reduction

Like a BDD, an SD can be reduced in size without changing its semantics. Reduction
is based on several operations; some of them are straightforward generalizations of
those introduced in the context of BDDs [Bry86], namely merging isomorphic nodes
(that are equivalent) and collapsing undecisive edges (that are always crossed), while
others are specific to set-labeled diagrams, namely suppressing dead edges (that are
never crossed), merging contiguous edges (that have the same source and the same
destination) and collapsing stammering nodes (successive decisions that pertain to the
same variable). All these notions are illustrated in the SD of Figure 2, and the reduced
form of this SD is shown on Figure 3. Formally:

Definition 2.7. – Two edges E1, E2 are contiguous iff Src(E1) = Src(E2) and
Dest(E1) = Dest(E2).

– Two nodes N1, N2 are isomorphic iff Var(N1) = Var(N2) and there exists a
bijection σ from Out(N1) onto Out(N2), such that ∀E ∈ Out(N1),Lbl(E) =
Lbl(σ(E)) and Dest(E) = Dest(σ(E)).

– An edge E is dead iff Lbl(E) ∩Dom(Var(E)) = ∅.
– A nodeN is undecisive iff |Out(N)| = 1 andE ∈ Out(N) is such that Dom(Var(E)) ⊆

Lbl(E).
– A non-root node N is stammering iff all parent nodes of N are labeled by Var(N),

and either
∑
E∈Out(N) |E| = 1 or

∑
E∈In(N) |E| = 1.

Definition 2.8 (Reduced form). A set-labeled diagram φ is said to be reduced iff no
node of φ is isomorphic to another, stammering, or undecisive; and no edge of φ is dead
or contiguous to another.

In the following, we can consider only reduced SDs since reduction can be done
in time polynomial in their size; indeed, each reduction step (removal of isomorphic
nodes, contiguous edges, etc.) is polytime and removes more nodes and edges than it
adds, hence even if we have to traverse the graph several times, the global complexity
remains polynomial.

Proposition 2.9 (Reduction). Let L be a sublanguage of SD among {SD, FSD, dSD, dFSD, MDD, MDD<}.
There exists a polytime algorithm that transforms any φ in L into an equivalent reduced
φ′ in L such that |φ′| ≤ |φ|.

We have seen that SDs are strongly related to BDDs and MDDs; we will now detail
these relations.

2.3 SDs and the Decision Diagram Family

Binary Decision Diagrams (BDDs, [Bry86]) are rooted, directed acyclic graphs that
represent Boolean functions of Boolean variables. They have two leaves, respectively
labeled ⊥ and >; their non-leaf nodes are labeled by a Boolean variable and have two
outgoing edges, respectively labeled ⊥ and >. A free BDD (FBDD) is a BDD that
satisfies the read-once property (each path contains at most one occurrence of each
variable). Whenever a same order is imposed on the variables along every path, we
get an ordered BDD (OBDD). OBDDs have been extended to enumerated domains as
MDDs by [SKMB90, Vem92, APV99] and later on, worked out by [AHHT07].

SDs are obviously not decision diagrams in the sense of Bryant since they do not
have a ⊥ sink, but classical MDDs do not either. Adding or not such a sink is actually
harmless, and does not represent a real difference. The first main difference between
decision diagrams and SDs is that SDs can be non-deterministic. Relationships between
SDs and their Boolean counterparts are formally provided thereafter.

Definition 2.10 (Polynomial translatability). A sublanguage L2 of SD is polynomially
translatable into another sublanguage L1 of SD, which we denote L1 ≤P L2, if and only if
there exists a polytime algorithm mapping any element from L2 to an equivalent element
from L1.

For any subclass L of SD, any D ⊆ N, let LD be the sublanguage of L for which all
domains are included in D. We will consider in particular classes dSD{0,1} , dFSD{0,1},
and FSD{0,1}, that generalize BDD, FBDD, and DNF respectively.

When an order is imposed on the variables, MDD{0,1} and OBDD are equivalent rep-
resentation languages, up to the existence of a ⊥ sink, which, once again, is harmless.
More generally, [SKMB90] have shown that a log encoding of the domains allow to
transform any MDD into an equivalent OBDD, providing by the way a convenient way
to implement a MDD package on top of a BDD package.

Let us put the emphasis on the new languages, namely focusing SDs:

Proposition 2.11 (FSD{0,1} ≤P DNF). Any formula in the DNF language can be ex-
pressed in the form of a FSD{0,1} in linear time.

Proposition 2.12 (dFSD{0,1} ≤P FBDD). Any FBDD (and thus any OBDD) can be
expressed in the form of an equivalent dFSD{0,1} in time linear in the FBDD’s size.

dFSD actually generalizes FBDD, and we will see that it reaches the same perfor-
mances as this fragment, except for the counting query. But it is worth noticing that,
contrary to FBDD, dFSD allows a variable to be met twice on a path. dFSD{0,1} is thus a
proper superset of FBDD.

FSD are more general than usual MDD compilations of CSPs, since they do not re-
quire any order nor even determinism; we will see in the following that this can lead to
exponential savings in space.

Last, but not least, it should be noticed that dFSDs and FSDs are not decompos-
able structures in the sense of Negation Normal Forms (NNFs). Indeed, the definition
of decomposability [Dar01], when applied to a decision diagram, implies that variables

cannot be repeated along a path. Since they are not decomposable, dFSDs do not de-
fine a subclass of AND/OR MDDs [MD06], of structured DNNFs [PD08], nor of tree
automata [FV04], that are decomposable (and ordered) structures.

3 A Compilation Map of SDs

In the following, we put forward the properties of the SD language and its sublanguages,
according to their spatial efficiency (succinctness), and to their capacity to make queries
and transformations tractable.

3.1 Succinctness

Definition 3.1 (Succinctness). A sublanguage L1 of SD is at least as succinct as another
sublanguage L2 of SD, which is denoted L1 ≤s L2, if and only if there exists a polynomial
P (·) s.t. for each element φ of L2, there exists an equivalent ψ of L1 verifying |ψ| ≤
P (|φ|).

Of course, ≤s is a preorder: let us denote ∼s its symmetric part and <s its asym-
metric part.

dFSD MDD MDD<

dSDSD

FSD

<s

<s

<s<s

<s

≤s

6≤s

L SD dSD FSD dFSD MDD MDD<

SD ≤s ≤s ≤s ≤s ≤s ≤s

dSD ? ≤s ? ≤s ≤s ≤s

FSD 6≤∗s 6≤∗s ≤s ≤s ≤s ≤s

dFSD 6≤∗s 6≤∗s 6≤∗s ≤s ≤s ≤s

MDD 6≤s 6≤s 6≤s 6≤s ≤s ≤s

MDD< 6≤s 6≤s 6≤s 6≤s 6≤s ≤s

Table 1. Results about succinctness. ∗means that the result is true unless the polynomial hierarchy
PH collapses. The graph above illustrates those results, dotted lines meaning that we lack of
information to prove both directions (i.e. it is proven that one of the languages is at least as
succinct as the other, but it isn’t known whether the converse is true or false).

Proposition 3.2 (Succinctness). The results of Table 1 hold.

This shows that SD <∗s FSD, FSD <∗s dFSD, and dFSD <∗s MDD, which means that
imposing focusingness, determinism, or ordering may lead to an exponential increase
in space.

3.2 Operations on Set-labeled Diagrams

We now need to extend to enumerated domains the queries and transformations con-
sidered in classical compilation maps. The importance of most of them is discussed
in depth in [DM02], so we refrain from recalling it here. We add to these operations
two new ones: The CX, “Context Extraction” query aims at providing the user with all
possible values of some variable of interest. The ∧tC “conjunction with a term” trans-
formation restricts the possible values of some variables to a subset of their domains.
These two operations are widely used in configuration, where the user iteratively looks
for the possible values of the next configuration variables and restricts its values accord-
ing to her preferences [AFM02]. For space reasons, we do not include here the most
straightforward operation extensions; they can however be found in the long version of
this paper.

L C
O

V
A

M
C

C
E

IM E
Q

S
E

M
X

C
X

C
T

M
E

SD ◦ ◦
√
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

dSD ◦ ◦
√
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

FSD
√
◦
√ √

◦ ◦ ◦
√ √

◦
√

dFSD
√ √ √ √ √

? ◦
√ √

?
√

MDD
√ √ √ √ √ √

◦
√ √ √ √

MDD<
√ √ √ √ √ √ √ √ √ √ √

DNNF
√
◦
√ √

◦ ◦ ◦
√ √

◦
√

d-DNNF
√ √ √ √ √

? ◦
√ √ √ √

OBDD
√ √ √ √ √ √

◦
√ √ √ √

OBDD<
√ √ √ √ √ √ √ √ √ √ √

L C
D

S
C
D

∧
tC

F
O

S
F
O

E
N

S
E
N

∧
C
∧
B
C

∨
C
∨
B
C

¬
C

SD
√√√

◦
√
◦
√ √√ √√

?
dSD

√√√
◦
√
◦
√ √√ √√ √

FSD
√√√ √√

◦ ◦ ◦ ◦
√√

◦
dFSD

√√√
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ?

MDD
√√√

• • • • • ◦ • ◦
√

MDD<
√√√

• • • • •
√
•
√ √

DNNF
√√√ √√

◦ ◦ ◦ ◦
√√

◦
d-DNNF

√√√
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ?

OBDD
√√√

•
√
•
√
• ◦ • ◦

√

OBDD<
√√√

•
√
•
√
•
√
•
√ √

Table 2. Results about queries and transformations;
√

means “satisfies”, • means “does not
satisfy”, and ◦ means “does not satisfy, unless P = NP”. Results for DNNF, d-DNNF, OBDD and
OBDD< are from Darwiche and Marquis’ map are given here as a baseline.

Definition 3.3 (Queries). Let L denote a subset of the SD language.

– L satisfies consistency (CO) (resp. validity (VA)) iff there exists a polytime algo-
rithm that maps every SD φ from L to 1 if φ is consistent (resp. valid), and to 0
otherwise.

– L satisfies equivalence (EQ) (resp. sentential entailment (SE)) iff there exists a
polytime algorithm that maps every pair of SDs (φ, φ′) from L to 1 if φ ≡ φ′ (resp.
I(φ) |= I(φ′)) and to 0 otherwise.

– L satisfies clausal entailment (CE) (resp. implication (IM)) iff there exists a poly-
nomial P (;) and an algorithm that maps every SD φ from L, any set of variables
{y1, . . . , yk} ⊆ Var(φ), and any sequence (A1, . . . , Ak) of sets of integers, to 1 if
I(φ) |= fy1,A1∨· · ·∨fyk,Ak

(resp. fy1,A1∧· · ·∧fyk,Ak
|= I(φ)) and to 0 otherwise,

in time P (|φ|;nA), where nA = max1≤i≤k |Ai| and fx,A is the function defined
on Y = {x} by fx,A(~y) = > ⇔ ~y(x) ∈ A.

– L satisfies model checking (MC) iff there exists a polytime algorithm that maps
every SD φ from L and any Var(φ)-assignment ~x to 1 if ~x is a model of φ and to 0
otherwise.

– L satisfies model enumeration (ME) iff there exists a polynomial P (;) and an algo-
rithm that outputs, for any SD φ from L, all models of φ in time P (|φ|; |Mod(φ)|).

– L satisfies model extraction (MX) iff there exists a polytime algorithm that maps
every SD φ in L to one model of φ if there is one, and stops without returning
anything otherwise.

– L satisfies context extraction (CX) iff there exists a polytime algorithm that outputs,
for any φ in L and any y ∈ Var(φ), Ctxtφ(y).

Definition 3.4. Let I, J be the interpretation functions on Var(I),Var(J) of some SDs.

– The conjunction (resp. disjunction) of I and J is the function I∧ J (resp. I∨ J) on
the variables in X = Var(I) ∪ Var(J) defined by (I∧ J)(~x) = I(~x) ∧ J(~x) (resp.
(I∨ J)(~x) = I(~x) ∨ J(~x)).

– The existential projection of I on Y ⊆ Var(I) is the function I↓Y on the variables
of Y defined by: I↓Y (~y) = > iff there exist a Z-assignment ~z (with Z = Var(I) \
Y) s.t. I(~z.~y) = >. The “forgetting” operation is the dual one: forget(I, Y) =

I↓Var(I)\Y .
– The universal projection of I on Y ⊆ Var(I) is the function I⇓Y on the variables

of Y defined by: I⇓Y (~y) = > iff for any Z-assignment ~z (with Z = Var(I) \ Y),
I(~z.~y) = >. The “ensuring” operation is the dual one: ensure(I, Y) = I⇓Var(I)\Y .

– Given an assignment ~y of some set of variables Y ⊆ Var(I), the conditioning of I by
~y is the function I|~y on the variables in Z = Var(I)\Y defined by: I|~y(~z) = I(~y.~z).

Definition 3.5 (Transformations). Let L denote a subset of the SD language.

– L satisfies conditioning (CD) iff there exists a polytime algorithm that maps every
SD φ in L and every assigment ~y of Y ⊆ Var(φ) to an SD φ′ in L such that
I(φ′) = I(φ)|~y .

– L satisfies forgetting (FO) (resp. ensuring (EN)) iff there exists a polytime algo-
rithm that maps every SD φ from L and every Y ⊆ Var(φ) to an SD φ′ in L such
that I(φ′) = forget(I(φ), Y) (resp. I(φ′) = ensure(I(φ), Y)).

– L satisfies SCD (resp. SFO, resp. SEN) iff it satisfies CD (resp. FO, resp. EN)
when limited to a single variable (i.e. Card(Y) = 1).

– L satisfies conjunction (∧C) (resp. disjunction (∨C)) iff there exists a polytime al-
gorithm that maps every finite set of SDs Φ = {φ1, . . . , φk} from L to an SD φ in L

such that I(φ) = I(φ1) ∧ · · · ∧ I(φk) (resp. I(φ) = I(φ1) ∨ · · · ∨ I(φk)).
– L satisfies bounded conjunction (∧BC) (resp. bounded disjunction (∨BC)) iff it

satisfies ∧C (resp. ∨C) when limited to a pair of SDs (i.e. Card(Φ) = 2)

– L satisfies term conjunction (∧tC) iff there exists a polynomial P (;) and an al-
gorithm that outputs, for every SD φ from L, any set of variables {y1, . . . , yk} ⊆
Var(φ) and any sequence (A1, . . . , Ak) of sets of integers, an SD φ′ in L such that
I(φ′) = I(φ)∧fy1,A1∧· · ·∧fyk,Ak

in time P (|φ|;nA), where nA = max1≤i≤k |Ai|.
– L satisfies negation (¬C) iff there exists a polytime algorithm that maps every SD φ

in L to an SD φ′ in L such that I(φ′) = ¬ I(φ).

Proposition 3.6. The results of Table 2 hold.

The results pertaining to MDDs are generally known or follows directly from [SKMB90,
KVBSV98]: in short, since MDDs (i) are a generalization of OBDDs to non-Boolean
domains and (ii) can be encoded as OBDDs, they obviously have the same capabili-
ties than OBDDs, except for SEN and SFO, for which the domain size has a more
important role.

Table 2 puts forward the attractivity of the new dFSD and FSD classes: their per-
formances are comparable to those of the d-DNNF (resp. DNNF) fragments, although,
once again, dFSD and FSD do not satisfy decomposability but a distinct property also
guaranteeing CO: focusingness.

From a more practical point of view, when one needs to use queries on compiled
forms, but no transformation, like in configuration applications, dFSDs are much more
interesting than MDDs — they can be much more compact, while satisfying almost
the same queries. It is worthwhile imposing a variable order (i.e. going from dFSDs to
MDDs) when one of the ¬C, SEN, SFO transformation is required.

Relaxing the requirement of determinism, we get the FSD fragment which moreover
satisfies FO and ∨C; FSD fits particularly applications such as planning, where one
needs to often check consistency, forget variables and extract models.

3.3 Capturing Continuous Variables

For the sake of simplicity, we chose to represent labeling sets as enumerations (the size
of a set is defined as its cardinality). However, they could be represented in a more
compact way, as a union of integer intervals. In this case, the effective size of a label
would be the number of bounds necessary to represent this union, and this could lead
to space savings linear in the size of the domains.

This idea of grouping elements raises another thought: there can be, in an SD, sub-
sets whose elements are never separated, i.e. values that are interchangeable. One could
then define meta-values, each one corresponding to one of these subsets. This would
preserve the structural properties (determinism, focusingness. . .) of the considered SD.

It is also worth noticing that these principles provide us with a way to capture con-
tinuous variables, and to transform “continuous SDs” into discrete SDs. Classically, a
continuous variable is “discretized” by partitioning its domain arbitrarily and replacing
it by an integer variable, each value of which is associated with a unique element of the
partition. Here, given a continuous SD, obtained for example by compiling the trace of
a continuous CSP solver [NFPV10], it is easy to compute a discrete labeling that fits
exactly the configuration of the graph. The idea is to recover, for each variable x, the set
B of bounds of all intervals pertaining to x in the continuous SD. The partition chosen

for Dom(x) is then the set containing all singleton intervals [a, a] where a ∈ B, and
all open intervals]a, b[where a and b are successive bounds in B. Thus, all continuous
intervals associated with x in the continuous SD and all intersections of such intervals
can be represented as the exact union of elements in the partition.

Doing so, we can build an SD representing a CSP with real variables without re-
sorting to an arbitrary (and spatially costly) discretization of the domains. The resulting
SD can be embarked along with a translation table, allowing to make queries and trans-
formations on the discrete structure and translating inputs (resp. results) from (resp. to)
real numbers.

4 Conclusion

This paper draws the compilation map of set-labeled diagrams, a new knowledge com-
pilation language able to represent solution sets of CSPs. We identified a structural
property, focusingness, which is not equivalent to decomposability, yet when imposed
on SDs allows the same queries and transformations. On the practical side, having con-
sidered CSPs rather than Boolean logic as a source language for compilation also raised
the need for specific operations, that weren’t covered by classical compilation maps
(context extraction, conjunction with a term); it is noticeable that focusingness is suf-
ficient to allow them in polytime. Finally, we sketched a way to use SDs to compile
continuous CSPs.

This work introduces the first brick of a complexity map of CSP compilation; it is
dedicated to “linear” decision diagrams. The next step is obviously to extend it to par-
allel focusing structures, the introduction of “AND” nodes. This will explicitly raise the
question of a property capturing both the notions of focusingness and decomposability.

Future work also involves studying of how to build SDs, notably the experimenta-
tion of a compiler based on the trace of a search-like algorithm, and the comparison of
various dynamic search heuristics w.r.t. SDs’ size.

References

[AFM02] J. Amilhastre, H. Fargier, and P. Marquis. Consistency restoration and explana-
tions in dynamic CSPs — application to configuration. Artificial Intelligence,
135(1-2):199–234, 2002.

[AHHT07] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint store
based on multivalued decision diagrams. In CP, pages 118–132, 2007.

[APV99] J. Amilhastre, P., and M.-C. Vilarem. FA Minimisation Heuristics for a Class of
Finite Languages. In WIA, pages 1–12, 1999.

[Bry86] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

[Dar01] Adnan Darwiche. Decomposable Negation Normal Form. Journal of the ACM,
48(4):608–647, 2001.

[DM02] A. Darwiche and P. Marquis. A Knowledge Compilation Map. JAIR, 17:229–264,
2002.

[FV04] H. Fargier and M.-C. Vilarem. Compiling CSPs into tree-driven automata for
interactive solving. Constraints, 9:263–287, 2004.

[KS92] H.A. Kautz and B. Selman. Forming concepts for fast inference. In Proc. of
AAAI’92, pages 786–793, San Jose (CA), 1992.

[KVBSV97] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Synthesis of
Finite State Machines: Functional Optimization. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[KVBSV98] T. Kam, T. Villa, R.K. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued
Decision Diagrams: Theory and Applications. Multiple-Valued Logic, 4(1–2):9–
62, 1998.

[MD06] R. Mateescu and R. Dechter. Compiling Constraint Networks into AND/OR
Multi-valued Decision Diagrams. In CP, pages 329–343, 2006.

[MT98] C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design:
OBDD — Foundations and Applications. Springer, 1998.

[NFPV10] A. Niveau, H. Fargier, C. Pralet, and G. Verfaillie. Knowledge compilation using
interval automata and applications to planning. In ECAI, pages 459–464, 2010.

[PD08] K. Pipatsrisawat and A. Darwiche. New compilation languages based on struc-
tured decomposability. In AAAI’08, 2008. 517-522.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming (Foundations of Artificial Intelligence). Elsevier Science Inc., New
York, NY, USA, 2006.

[SKMB90] A. Srinivasan, T. Kam, S. Malik, and R.K. Brayton. Algorithms for discrete func-
tion manipulation. In ICCAD-90, pages 92 –95, November 1990.

[Vem92] N. R. Vempaty. Solving Constraint Satisfaction Problems Using Finite State Au-
tomata. In AAAI, pages 453–458, 1992.

A Proofs of Reduction, Translatability, and Succinctness

In all of these proofs, we consider for short that for an interpretation function I with
Y = Var(I), a set of variables Z s.t. Z ∩ Y = ∅, ~y a Y -assignment and ~z a Z-
assignment, I(~y.~z) is simply defined as I(~y).

Let φ be an SD on X and ~x an X-assignment. A path p from the root to the sink of
φ is said to be compatible with ~x if and only if for each edge E along p, ~x(Var(E)) ∈
Lbl(E).

For any I, we denote ~x |= I the fact that ~x is a model of I, and ~x |= φ iff ~x |= I(φ).
We also denote ~x |= p if p is a path compatible with ~x.

A.1 Reduction

Lemma A.1. Algorithm 1 reduces SDs in polytime.

Proof. Let us apply Algorithm 1 on an SD φ.
For a given node N :

– the operation of l. 4 suppresses N if it is stammering
– the operation of l. 10 ensures that N has no more dead outgoing edges
– the operation of l. 15, ensures that N has no more contiguous outgoing edges
– the operation of l. 18 suppresses N if it is undecisive
– the operation of l. 24 suppresses all nodes that are isomorphic to N

Algorithm 1 Reduction algorithm. At any time during process, if an edge has no source
or destination, it is suppressed; so are non-leaf nodes without outgoing edges and non-
root nodes without incoming edges.
1: repeat
2: number the nodes of φ in such a way that if Ni ∈ Ch(Nj) then i < j
3: for i from 1 to the number of nodes in Γ (φ) do
4: if Ni is stammering then
5: for all (Ein, Eout) ∈ In(Ni)×Out(Ni) do
6: add an edge from Src(Ein) to Dest(Eout) labeled by Lbl(Ein) ∩ Lbl(Eout)
7: suppress Ni

8: else
9: for all E ∈ Out(Ni) do

10: if E is dead then
11: suppress E
12: else
13: mark E
14: for all E′ ∈ Out(N) such that E′ is not marked do
15: if E and E′ are contiguous then
16: label E with Lbl(E) ∪ Lbl(E′)
17: suppress E′

18: if Ni is undecisive then
19: for all Ein ∈ In(Ni) do
20: redirect Ein to the child of Ni

21: suppress Ni

22: else
23: for j from 1 to the number of nodes in Γ (φ) do
24: if Ni and Nj are isomorphic then
25: for all Ein ∈ In(Ni) do
26: redirect Ein to Nj

27: suppress Ni

28: until φ has not changed during process

and the algorithm stops when no operation has to be applied, so obviously the resulting
SD is reduced. Moreover, it is easy to verify that each operation leaves the semantics
of φ unchanged. Finally, every operation removes stricly more edges or nodes than it
creates;7this proves that (i) the algorithm eventually stops (once the SD is empty, it does
not change anymore), and (ii) the size of the resulting SD is lower than |φ| (the only
case where the size does not change is when the input SD is already reduced).

The computation for each node is obviously polynomial and the traversal loop (l. 3)
treats each node once; as a result, what is inside of the repeating loop (from l. 2 to l. 27)
is processed in polytime.

As the reducibility properties are not mutually independant, the traversal must be
repeated while it has modified something in φ (l. 28). This does not change polynomial-
ity: since a traversal lowers the size of φ (except of course for the last one), the traversal
loop will not be repeated more than |φ| times.

Note that there obviously exists more efficient methods to reduce an SD, but the
only point here is to show that this operation is polytime. ut
Definition A.2 (SD focusing w.r.t. a variable). An SD φ is said to be focusing w.r.t. y,
with y ∈ Var(φ) iff every edge E in φ s.t. Var(E) = y is focusing.

Lemma A.3. Algorithm 1 maintains the property of focusing w.r.t. a given variable.

Proof. Let φ be an SD that is focusing w.r.t. y ∈ Var(φ). Let us suppose that we are at
step i in the algorithm, with Var(Ni) = y.

– “stammering” operation: let E ∈ Out(Ni) and E′ be an edge on a path from
Dest(E) to the sink such that Var(E′) = y. E′ is focusing, so Lbl(E′) ⊆ Lbl(E).
Thus Lbl(E′) ⊆ Lbl(E) ∩ Lbl(Ein) for any Ein ∈ In(Ni). Hence E′ is still
focusing after the “stammering” operation.

– “dead” operation: suppressing edges does not have any influence on the focusing-
ness of other edges in the graph.

– “contiguous” operation: the two contiguous edges points to the same node, so every
descendant edge E associated with y is such that Lbl(E) is included in the labeling
interval of either one of the contiguous edge; hence it is included in their union.

– “undecisive” operation: every descendant edge of the child of Ni is also a descen-
dant edge of Ni, so this operation does not compromise their focusingness.

– “isomorphic” operation: since every outgoing edge of every node isomorphic to Ni
is focusing, redirecting all the parent edges to Ni is harmless.

ut
Lemma A.4 (SDs focusing w.r.t. all their variables). A reduced SD φ that is focusing
w.r.t. every variable in Var(φ) is focusing.

Proof. Let E be an edge in φ. Either Var(E) = y 6= Y, in which case E is focusing,
as φ is focusing w.r.t. y; or Var(E) = Y, in which case E is also focusing, as every
edge E′ in φ such that Var(E′) = Y is labeled by {0} (since φ is reduced). Hence φ is
focusing. ut

7 The only operation that creates anything is the stammering one, and recall that either In(Ni)
or Out(Ni) contains only one element.

Lemma A.5. Algorithm 1 maintains determism.

Proof. Let φ be a dSD. Let us suppose that we are at step i in the algorithm, with
Var(Ni) = y.

– “stammering” operation: parent labels are modified only by value removal, so they
are still deterministic after the operation.

– “dead” operation: suppressing edges does not have any influence on the determin-
ism.

– “contiguous” operation: the two contiguous edges were disjoint with the other
edges, so their union also is.

– “undecisive” operation: no edge is modified or added.
– “isomorphic” operation: no edge is modified or added.

ut

Proof (Proof of Proposition 2.9 (reduction)).

SD: Straightforward from Lemma A.1

FSD: Let φ be an FSD. φ is a fortiori focusing w.r.t. all of its variables. Lemma A.3
states that the SD φ′ obtained by Algorithm 1 is also focusing w.r.t. all of its variables.
Since φ′ is reduced, we use Lemma A.4 to infer that φ′ is focusing. Thus our reduction
algorithm maintains the focusing property, hence the result.

dSD: Thanks to Lemma A.5, we know that our reduction algorithm maintains deter-
minism.

dFSD: Our reduction algorithm maintains both focusingness (as shown above in this
proof) and determinism (Lemma A.5), hence the result.

ut

A.2 Polynomial Translatability w.r.t. Decision Diagrams

In the following, we suppose that SDs (resp. dSDs, dFSDs, FSDs, MDDs) are in re-
duced form. This is harmless thanks to Proposition 2.9.

As usual with compilation maps, may proofs take advantage of the fact that all
the languages presented allow to represent a term (resp. a clause) of Boolean logic in
polytime and linear space.

Lemma A.6 (MDD{0,1},< ≤P term, MDD{0,1},< ≤P clause).

– Given an order < between variables Any term or clause in propositional logic can
be expressed in the form of a MDD{0,1},< in polytime.

– Any term or clause in propositional logic can be expressed in the form of a MDD
(resp. FSD, dFSD) in polytime.

Proof. To represent a term t = l1∧· · ·∧lk by a MDD{0,1},<, first order its literal in such
a way that i < j iff var(li) < var(lj). Then build a chain of nodes N1, . . . , Nk, Nk+1

where var(Ni) = var(li), i = 1, k and Nk+1 is the sink of the SD. The edges are the
following: each node Ni (but the sink) has a unique child Ni+1, and the edge’s label is
{1} if li is a positive literal and {0} if li is a negative literal.

To represent a clause cl = l1∨· · ·∨lk by a MDD{0,1},<, first order its literals in such
a way that i < j iff var(li) < var(lj). Then build a chain of nodes N1, . . . , Nk, Nk+1

where var(Ni) = var(li), i = 1, k and Nk+1 is the sink of the SD. The edges are the
following: each node Ni, i < k has a two children, Ni+1 and the sink, Nk+1. If li is
a positive literal, the edge pointing to Ni+1 is labeled by {0} and the one pointing to
Nk+1, by {1}; If li is a negative literal, this is the opposite. Finally, Nk has a a unique
successor, the sink, and the edge is labeled by {1} if lk is a positive literal, and by {0}
otherwise.

The second item holds since MDD{0,1},< is respectively included in MDD, FSD, and
dFSD. ut
Proof (Proof of Proposition 2.11 (FSD{0,1} ≤P DNF)). Lemma A.6 states that each of
the k terms of a DNF can be turned into an FSD{0,1} in linear time; Now, to make the
disjunction of k FSDs{0,1} φ1, . . . , φk, simply define a new node, say N , labeled by Y.
Then, for each φi, add an edge fromN to Root(φi) labeled by {0}. Fuse the sink nodes
of the φi into a single one. This construction is linear in time and space w.r.t. the size of
the DNF and preserves the property of focusing. ut

Algorithm 2 Transformation of a BDD φ into a dSD{0,1}
1: let ψ be the sink-only graph.
2: for all node N in φ, ordered from the ⊥-labeled leaf to the root do
3: add to ψ a node N ′ labeled by the same variable as N .
4: for all edge E in φ coming out of N do
5: let D be the node to which E points
6: if D has a corresponding node D′ in ψ then
7: add to ψ an edge E′ coming from N ′ and pointing to D′

8: if E is labeled by ⊥ then
9: label E′ with {0}

10: else
11: label E′ with {1}
12: if the root R of φ has a corresponding node R′ in ψ then
13: let Root(ψ) = R′

14: else
15: let ψ be the empty graph
16: return ψ

Lemma A.7.

– Algorithm 2 transforms a BDD into an equivalent SD in time linear in the BDD’s
size.

– When applied on an OBDD<, Algorithm 2 outputs an MDD< (respecting the same
variable order).

Proof.

– Algorithm 2 transforms a BDD into an equivalent SD by removing its ⊥-labeled
node, and by recursively removing all edges pointing to no node, and all non-leaf
nodes without outgoing edges. The graph obtained then becomes an SD because
each >-labeled edge is replaced by a {1}-labeled edge, and each ⊥-labeled edge is
replaced by a {0}-labeled edge.
It is obvious that the obtained SD is deterministic, due to the BDD structure. More-
over, this construction is linear in time and space w.r.t. the size of the BDD (each
edge is computed once).

– The procedure does not modify the structure of the graph; thus, the read-once prop-
erty and the variable order are preserved.

ut

Algorithm 3 Transformation of a dSD{0,1} φ into a BDD
1: if φ is empty then
2: return the ⊥ BDD
3: let ψ be a BDD with its two leaves
4: for all node N in φ, ordered from the sink to the root, excluding the sink do
5: add to ψ a node N ′ labeled by the same variable as N .
6: let U := ∅
7: for all edge E ∈ Out(N) do
8: let D := Dest(E)
9: let D′ be the node in ψ corresponding to D (the node corresponding to the sink being

the >-leaf)
10: if 0 ∈ Lbl(E) then
11: add to ψ a ⊥-edge coming from N ′ and pointing to D′

12: if 1 ∈ Lbl(E) then
13: add to ψ a >-edge coming from N ′ and pointing to D′

14: U := U ∪ Lbl(E)
15: if 0 /∈ U then
16: add to ψ a ⊥-edge coming from N ′ and pointing to the ⊥-leaf
17: if 1 /∈ U then
18: add to ψ a >-edge coming from N ′ and pointing to the ⊥-leaf
19: set the root of ψ to be the corresponding node of Root(φ)
20: return ψ

Lemma A.8.

– Algorithm 3 transforms a dSD into an equivalent BDD in time linear in the dSD’s
size.

– When applied on an MDD{0,1},<, Algorithm 3 outputs an OBDD< (respecting the
same variable order).

Proof.

– Algorithm 3 use the reverse procedure as of Algorithm 2: replace each {1}-labeled
edge by a>-labeled edge, each {0}-labeled edge by a⊥-labeled edge, each {0, 1}-
labeled edge by two edges (same source, same destination), one labeled by > and
one labeled by ⊥. Replace the sink by a >-labeled leaf and add one ⊥-labeled leaf.
Finally, for each node that as only one outgoing edge, add to it another outgoing
edge labeled by the other value and pointing to the⊥-leaf. The process is obviously
linear (each edge is encountered once, and we add at most one edge for each node).

– Again, the procedure does not modify the structure of the graph; thus, the read-once
property and the variable order are preserved.

ut

Lemma A.9 (dSD{0,1} ∼P BDD). Any BDD can be expressed in the form of an equiv-
alent dSD{0,1} in time linear in the BDD’s size.

Any dSD{0,1} can be expressed in the form of an equivalent BDD, in time linear in
the graph’s size.

Proof (Proof of Lemma A.9).
dSD{0,1} ≤P BDD holds thanks to Lemma A.7, which also states that the procedure

is linear.
BDD ≤P dSD{0,1} holds thanks to Lemma A.8, which also states that the procedure

is linear. ut

Proof (Proof of Proposition 2.12(dFSD{0,1} ≤P FBDD)). If we use Algorithm 2 on an
FBDD, the resulting dSD is focusing. Indeed, as each variable can only be encountered
once on each path, there is no risk that an interval conflicts with another.

Lemma A.7 states that the complexity of the algorithm is linear w.r.t. the size of the
input.

ut

Lemma A.10. MDD{0,1},< ∼P OBDD< holds.

Proof. Straightforward from Lemmas A.7 and A.8.
ut

A.3 Succinctness

Lemma A.11. Let γ be a clause; a dFSD{0,1} equivalent to Σ ∨ l can be constructed
in polytime in the size of Σ.

Proof. Let Σ be a dFSD{0,1}; let l1, . . . , ln the literals that appear in γ.
Σ ∨ l1 ≡ (Σ|¬l1 ∧¬l1)∨ l1 . Since dFSD satisfies CD, a dFSD{0,1} β representing

Σ|¬l1 can be built in polytime. A dFSD{0,1} equivalent to (β ∧ ¬l1) ∨ l1 can be built,
whose root is labeled by var(l1) and has two outgoing edges: the first one is labeled

by {1} if l1 is a positive literal, by {0} otherwise; the second one one is labeled by {0}
if l1 is a positive literal, by {1} otherwise, and links the root to β. The procedure is
polynomial and the result is linear in the size of Σ (the size Σ|¬l1 is lower than the one
of Σ; then one node and two edges are added).

Iterating the operation for i = {1, . . . , n}, we get a dFSD{0,1} equivalent to Σ ∨ γ;
its number of nodes (and thus, of edges) in bounded by n+ |nodes(Σ)| ut

Many proofs of succinctness rely on the following lemma, due to [KS92]:

Lemma A.12. It is impossible to find a polysize compilation function comp such that
for any CNF Σ and any clause γ, checking whether Σ |= γ using comp(Σ) can be
done in polytime, unless the polynomial hierarchy PH collapses at the second level.

In particular, it is impossible, unless the polynomial hierarchy PH collapses at the sec-
ond level, to find a target language at least as succinct as CNF that supports CE.

Proof (Proof of Proposition 3.2 (succinctness table)).

SD ≤s
{
dSD, FSD, dFSD, MDD, MDD<

}
. Of course, MDD< ⊆ MDD ⊆ dFSD ⊆ FSD ⊆ SD

and dFSD ⊆ dSD ⊆ SD. This proves the first line of the table.{
dSD, FSD, dFSD, MDD

}
≤s MDD<. The same basic inclusions prove the last column of

the table.{
dSD, FSD, dFSD

}
≤s MDD. Again from the same basic inclusions.{

dSD, FSD
}
≤s dFSD. Again from the same basic inclusions.

FSD 6≤∗s dSD. Any clause can be expressed as in polytime as a dSD{0,1}. Making the
conjunction of two dSDs is linear (just let the source of the first one be the sink of the
second one, see also Prop. 3.6). Hence dSD{0,1} ≤P CNF.

Suppose we had FSD{0,1} ≤s dSD{0,1}: by transitivity it would be true that FSD{0,1} ≤s
CNF.

Yet, FSD supports CE (Prop. 3.6), and it is impossible to find a target language at
least as succinct as CNF and supporting CE, unless the polynomial hierarchy collapses
(Lemma A.12).

As a result, FSD{0,1} 6≤s dSD{0,1} and thus FSD 6≤s dSD, unless the polynomial
hierarchy collapses.{
FSD, dFSD

}
6≤∗s

{
SD, dSD

}
. This result comes from the fact that FSD 6≤∗s dSD, and

that dFSD ⊆ FSD and dSD ⊆ SD.

dFSD 6≤∗s FSD. The proof is close to the one of d-DNNF 6≤s DNF [DM02].
Suppose we had dFSD{0,1} ≤s FSD{0,1}: since FSD{0,1} ≤P DNF (Proposition 2.11),

by transitivity it would be true that dFSD{0,1} ≤s DNF. Then any DNF ∆ can be com-
piled into an equivalent polysize dFSD{0,1} (∆)∗.

Now, checking whether a clause γ in entailed by a CNF sentence Σ is equivalent
to checking whether the sentence ¬Σ ∨ γ is valid, where ¬Σ is a DNF. As a DNF,

¬Σ can be compiled into a dFSD{0,1} (¬Σ)∗ in time and size polynomial. Thanks to
Lemma A.11, we can get in polytime a dFSD{0,1} equivalent to (¬Σ)∗ ∨ γ, and, since
dFSD satisfy VA, we can check in polytime whether (¬Σ)∗ ∨ γ is valid.

In summary (¬Σ)∗ is a polysize compilation of Σ, allowing clausal entailment to
be achieved in polytime. The existence of such a (¬Σ)∗ for every CNF Σ implies the
collapse of the polynomial hierarchy (Lemma A.12).

Hence, dFSD{0,1} ≤s FSD{0,1} and thus dFSD 6≤s FSD, unless the polynomial hier-
archy collapses.

MDD 6≤s dFSD. Suppose that MDD ≤s dFSD. Since dFSD{0,1} ≤P FBDD (Prop. 2.12), it
holds that MDD{0,1} ≤s FBDD. Then from MDD{0,1} ∼P OBDD (consequence of Lemma A.10),
we deduce OBDD ≤s FBDD, which is false (see [DM02]).

MDD 6≤s
{
dSD, FSD, SD

}
. This holds since dFSD ≤s MDD and dFSD 6≤s

{
dSD, FSD, SD

}
.

MDD< 6≤s MDD. It is easy to show that OBDD< 6≤s OBDD [DM02]. Since MDD<{0,1} ∼P
OBDD< (Lemma A.10) this is straightforward that MDD{0,1} ∼P OBDD, and from those
two equivalences, MDD< 6≤s MDD.

MDD< 6≤s
{
SD, dSD, FSD, dFSD

}
. Immediate from the above proof and from the fact

that MDD is included in all of these fragments.
ut

B Queries and Tranformations

This section is entirely devoted to the proof of Proposition 3.6.

B.1 Model Checking

SD supports MC. First, condition the SD by the X-assignment that is to be checked,
say ~x. The resulting SD contains only Y-nodes, so reduction removes them all. We get
either the empty SD (then the assigmement is not a model) or the sink-only SD (then ~x
is a model). �

FSD, dSD, dFSD, MDD and MDD< support MC. Immediate from the fact that all these
languages are subsets of SD, and SD satisfies MC. �

B.2 Conjunction with a Term

SD, dSD, MDD and MDD< support ∧tC. Straightforward from the fact that these lan-
guages support ∧BC. �

FSD and dFSD support ∧tC. To conjunct an SD ψ with x ∈ A, compute the restriction
ψ|x∈A by simply removing from the x-edges the values that do not belong to A. The
procedure is linear in the size of ψ andA (bounded byO(|A| · |φ|)). The graph of ψ and
ψ|x∈A are the same — only the labels on the edges change. Then add before the root of
ψ|x∈A a node labeled by x, with a single outgoing edge labeled by A and pointing to
the former root (since there may be paths that do not mention x).

The operation is linear and does not increase the size of that graph. Moreover, it
preserves the properties of focusingness (E ⊆ F =⇒ E ∩ A ⊆ F) and determinism
(E ∩ F = ∅ =⇒ (E ∩A) ∩ (F ∩A) = ∅)

Moreover, I(ψ′) = I(ψ) ∧ fx,A: By construction, for any ~z, if ~z is a counter model
for ψ, it is also a counter model for ψ′. Moreover any ~z, when ~z(x) belongs to A, is
supported by the very same path in ψ and ψ: ~z is a model of I(ψ) and satisfies x ∈ A,
it is a model of I(ψ|x∈A). Hence I(ψ′) = I(ψ) ∧ fx,A.

To conjunct φ by a term x1 ∈ A1, . . . , xk ∈ Ak, repeat the operation for each
xi ∈ Ai. The graph of ψ and ψ|x∈A are the same — only the labels on the edges
change. Since each elementary restriction does not increase the size of that graph, the
complexity of the full procedure is bounded by O(k · |φ| ·max1≤i≤k |Ai|).

As a consequence, FSD and dFSD satisfy ∧tC. �

B.3 Queries on dSD and SD

dSD does not support CO, VA, CE, IM, EQ, SE, CT, ME. From dSD{0,1} ≤P BDD

(Lemma . A.9) and BDD does not satisfy CO, VA, CE, IM, EQ, SE, CT, ME unless
P = NP. �

dSD does not support MX, CX. Since MX implies CO (resp. CX implies CO): if
MX (resp. CX) were polynomial, we would have a polytime algorithm for deciding
whether a dSD is consistent or not, whereas dSD does not support CO unless P = NP.
�

SD does not support CO, VA, CE, IM, EQ, SE, MX, CX, CT, ME. SD does not
satisfy CO, VA, CE, IM, EQ, SE, MX, CX, CT, ME since dSD ⊆ SD and dSD no
not satisfy any of these requests unless P = NP. �

B.4 Queries on FSD

FSD does not support VA, IM, EQ, SE, CT. FSD does not satisfy VA, IM, EQ, SE,
CT, since FSD{0,1} ≤P DNF (Proposition 2.11) and DNF does not satisfy VA, IM, EQ,
SE nor CT, unless P = NP. �

FSD supports CO. CO holds since (i) any FSD can be reduced in polytime, and (ii)
the only reduced SD that is not consistent is the empty graph. Indeed, suppose that a
reduced FSD φ has at least one variable-edge E (a reduced EA cannot contain only
Y-nodes); as Lbl(E) ∩ Dom(Var(E)) 6= ∅, there is at least a value v in Lbl(E) that
is included in the domain of its variable. As E is focusing, v is also coherent with the
preceding edges in φ. Since it is the case for all edges, φ cannot be inconsistent. �

FSD supports ME. Let φ be a FSD. We check (in polytime) whether φ is consis-
tent ; if it is not the case, the empty set is returned. Otherwise, we build a decision tree
representing a Mod(φ). Let us denote Var(φ) = {x1, . . . , xn}; we create a tree T , ini-
tially containing only one node, labeled by the empty assignment. We complete the tree
thanks to the following process:

1: for all i from 1 to |Var(φ)| do
2: let F be the set of T ’s leaves.
3: for all F in F do
4: let ~z be the {x1, . . . , xi−1}-assignment labeling F .
5: for v ∈ Dom(xi) do
6: let ~v be the {xi}-assignment such that ~v(xi) = v
7: if I(φ)|~z.~v is consistent then
8: add a child to F , labeled by ~z.~v.
9: remove F from F .

The model set of φ is then the set of assignments labeling the leaves of T , as we
tested each possible value for each variable. At the end of the algorithm, all the leaves
of T are at the same level (i.e. the paths of T are of equal length); indeed, for each
node, at least one of the tests of l. 7 must pass (as the current FSD is consistent). It
implies that at each incrementation of i, |F| ≤ |Mod(φ)|. Moreover, for each variable
x, |Dom(x) ≤ |φ| by definition of the size. Hence, the test of l. 7 is not done more than
|Mod(φ)| · |φ| in the whole algorithm.

Now, this test is made in time polynomial w.r.t. |φ|, as FSD supports CO and SCD.
Hence, the global algorithm is polytime w.r.t. |Mod(φ)| and |φ|. �

FSD supports MX. Let φ be an FSD. If it is consistent (which can be verified in
polytime), let ~x ∈ Dom(Var(φ). Starting from the sink, we chose a path to the root.
For each edge E of this path, we chose a value v ∈ Lbl(E) ∩ Dom(Var(E)) (as φ is
reduced, we know that this set is not empty), and assign it to ~x: ~x(Var(E)) := v, except
if we already encountered this variable (we know that the value we chosed before is also
compatible with this edge, as φ is focusing) or if Var(E) = Y. When the root is reached,
~x is a model of φ (for every unencountered variable, ~x was set to a domain-compatible
value at the beginning). This procedure is done in time polynomial in |φ|. �

FSD supports CX. The following polynomial algorithm (each edge is encountered
once) computes the context of y in φ:

1: reduce φ
2: let C := ∅
3: mark the sink of φ
4: for all node N in φ, ordered from the sink to the root do
5: if N is marked then
6: for all E ∈ In(N) do
7: if Var(E) = y then
8: add Lbl(E) to C
9: else

10: mark Src(E)

11: if the root of φ is marked then
12: C := Dom(y)
13: return C ∩Dom(y)

The idea is to find the y-frontier of the sink (e.g. the set of the y-labeled nodes N such
that there exists a path from a child of N to the sink not mentioning y), by pulling up a
mark meaning that no y-labeled node has been encountered. If a mark reaches the root,
there is at least one path from the root to the sink on which there is no y-labeled node, so
the context of y in φ is Dom(y) (because φ is reduced, so the path is trivially satisfiable,
in the same way that a non-empty reduced FSD is satisfiable). If not, the context of y
is the union C of the intervals labeling edges by which the y-frontier access the sink,
intersected with the domain of y (this intersection being polytime w.r.t. the number of
intervals in C, and thus w.r.t. |φ|). �

FSD supports CE. Checking whether φ entails fx1,A1
∨ · · · ∨ fxk,Ak

is equivalent to
checking whether φ∧¬fx1,A1

∧· · ·∧¬fxk,Ak
is inconsistent. As ¬fx,A ≡ fx,Dom(x)\A,

and FSD supports ∧tC and CO, it supports CE. �

B.5 Queries on dFSD

dFSD supports CO, CE, MX, CX, ME. All these operations are supported, since
dFSDs are particular FSDs. �

dFSD does not support SE. dFSD does not satisfy SE, since dFSD{0,1} ≤P FBDD

(Proposition 2.12) and FBDD does not satisfy SE unless P = NP. �

For to prove IM, we need the following lemma, that extends Lemma A.11:

Lemma B.1. Let Y be a set of variables Y = {y1, . . . , yk} ⊆ Var(φ), and let (A1, . . . , Ak)
be a sequence of sets of integers. For any dFSD φ, we can compute in polytime a dFSD
equivalent to φ ∨ fy1,A1

∨ · · · ∨ fyk,Ak
.

Proof. Let us consider one of the fy,A. φ ∨ fy,A ≡ (φ ∧ ¬fy,A) ∨ fy,A.
Obviously ¬fy,A ≡ fy,Dom(y)\A, and |Dom(y) \A| can be obtained in time linear

in the size of A and Dom(y), thus in time linear in |A| and |φ| (the sizes of the domains
are comprised in the size of φ).

The procedure described in the proof of ∧tC on dFSD is also done in time linear,
and the resulting dFSD contains only edges whose label is included in A.

Hence, we can obtain a linear dFSD β representing φ ∧ ¬fy,A, that contains only
edges whose label is included in A.

Then we can build a dFSD equivalent to β ∨ fy,A as follows: its root is labeled by
y and has two outgoing edges, the first one labeled by A and pointing to the sink, the
second one labeled by Dom(y) \A and pointing to the root of β.

Obviously, the resulting dFSD is equivalent to (φ ∧ ¬fy,A) ∨ fy,A and thus to
φ ∨ fy,A, and it is deterministic and focusing (the ∧tC procedure preserves those two
properties, and the root node we add is deterministic and contains all edges’ labels of
β). This procedure is linear in the size of φ and A.

Iterating the operation for y ∈ {y1, . . . , yk}, we get a dFSD equivalent to φ ∨
fy1,A1

∨ · · · ∨ fyk,Ak
; its number of nodes (and thus, of edges) is polynomial in |φ|,

max1≤i≤k |Ai|, and k which is bound by |φ|. ut

dFSD supports IM. Checking whether fx1,A1
∧ · · · ∧ fxk,Ak

entails φ is equivalent
to checking whether φ ∨ ¬fx1,A1

∨ · · · ∨ ¬fxk,Ak
is valid. Lemma B.1 states that we

can obtain a dFSD equivalent to this formula in polytime. Since dFSD supports VA, it
implies that it supports IM. �

dFSD supports VA. The following algorithm, applied to a dFSD φ, returns true if and
only if phi is valid. In this algorithm we consider all labels to be included in the vari-
ables’ domains (this can be done in polytime).

1: for all node N in φ do
2: for all x ∈ Var(φ) do
3: let Sx,N := ∅
4: for all x ∈ Var(φ) do
5: let Sx,Root(φ) := Dom(x)
6: for all node N in φ, ordered from the root to the sink do
7: let x := Var(N)
8: let U := ∅
9: for all E ∈ Out(N) do

10: U := U ∪ Lbl(E)
11: let Sx,Dest(E) := Sx,Dest(E) ∪ Lbl(E)
12: for all y ∈ Var(φ) do
13: let Sy,Dest(E) := Sy,Dest(E) ∪ Sy,N
14: if U + Sx,N then
15: return false
16: return true
The idea is to check whether what comes in each node is included into what comes
out, i.e. no value is “lost” (what comes in the root being the whole Dom(Var(φ))).
Formally, let us first define the notion of “last ancestor edge”: For a node N , labeled by
x, an edge E is a last ancestor of N if and only if Var(E) = x and there exists a path p
from Dest(E) to N that contains no other x-node than N .

Now, our algorithm checks whether the following property (denoted InEqOut(N))
is true for all node N :

– if there exists a path from the root to N that contains no other x-node than N , then

∀v ∈ Dom(Var(N)),∃Ev ∈ Out(N), v ∈ Lbl(Ev)

– if not, then for every ancestor edge of N

∀v ∈ Lbl(E),∃Ev ∈ Out(N), v ∈ Lbl(Ev)

Our algorithm does this by gathering the last label encountered for each variable
(Line 11), and making at each node, for each variable, the union of gathered labels

of all incoming paths (Lines 11 and 13). It checks on Line 14 whether the union of
outgoing labels contains all the computed “label set” for the node’s variable. The root is
treated as a special case, allowing to check the first item of InEqOut(N)’s definition.

Now, let us prove that

∀N ∈ Nodes(φ), InEqOut(N) ⇔ φ |= >.

– (⇒) We show that for any assignment ~y ∈ Dom(Var(φ)), there exists a path in
the graph that is compatible with ~y. Let us consider ~y ∈ Dom(Var(φ)). At each
node N labeled by any variable x, we are assured to have the possibility to choose
an outgoing edge compatible with ~y(x). Indeed, either this is the first x-node we
encounter, and thus there exists an outgoing edge compatible with any value in
Dom(x), or we already encounter at least one x-node, and chosen a value v for
x; then the second item of InEqOut(N)’s definition ensures that there exists an
outgoing edge compatible with v.
As it is true for each node, there is always a compatible edge that can be taken,
therefore we are assured to reach the sink; thus, there exists a path from the root to
the sink of phi that is compatible with ~y. This proves that ~y is a model.
As it is true for any assignment ~y ∈ Dom(Var(φ)), φ is valid.

– (⇐) Suppose there exists a node N that does not verify InEqOut(N). Denoting
Var(N) = x, this means that
• either (a) there exists a path pR from the root toN that contains no other x-node

than N , and then there is a value v ∈ Dom(x) such that ∀E ∈ Out(N), v /∈
Lbl(E);

• or (b) there is no such path, and then there exists an ancestor edge Eancestor of
N and a value v ∈ Lbl(Eancestor) such that ∀EOut(N), v /∈ Lbl(E);

Let us consider a path p, the one denoted pR in the case (a), or any path containing
Eancestor in the case (b). Let ~y ∈ Dom(Var(φ)) be an assignment that is (i) com-
patible with p and such that (ii) ~y(x) = v. Such an assignment exists, because (i) as
φ is focusing, all paths from the root to N are compatible with at least one model
(there is no contradiction between the edges, as long as φ is reduced of course), and
(ii) p has been defined in both cases (a) and (b) to be compatible with v.
Let us suppose ~y ∈ Mod(φ). There exists a path p′, from the root to the sink of
φ, that is compatible with ~y. Determinism imposes that p and p′ be equal from the
root to N ; indeed, only one acceptable choice is possible at each node. Since p′

is compatible with ~y, this means there is an edge E going out of N and such that
v ∈ Lbl(E), which has been supposed to be false. Then ~y /∈ Mod(φ), hence φ is
not valid.

�

B.6 Queries on MDD

MDD supports CO, VA, CE, IM, MX, CX, ME. All these operations are supported,
since MDDs are particular dFSDs. �

MDD supports CT. As MDDs are read-once and deterministic, given a MDD φ with
variable order <, we simply have to associate to the sink the number nSink(φ) = 1, then
traverse the graph from the sink to the root, associating to each edge E the number

nE = |Lbl(E)| ·
∏

Var(Src(E))<x<Var(Dest(E))

|Dom(x)|

and to each node N the number

nN =
∑

E∈Out(N)

nE .

The number of models is then nRoot(φ). This process being polynomial in |φ|, MDD
satisfies CT. �

MDD supports EQ. Let φ be an MDD on X = {x1, . . . , xn}, with variable ordering
x1 < · · · < xn. For each variable xi and each value vj ∈ Dom(x) = {v1, . . . , vki},
let us define a {0, 1}-variable xji , taking the value 1 when xi = vj and 0 otherwise.
Following [SKMB90, KVBSV97, KVBSV98] can build an MDD in which each x-
node of φ is replaced by an ordered sequence of xji nodes, using the following proce-
dure:

1: if φ is empty then
2: let φbin be the empty MDD
3: else
4: let φbin be the sink-only MDD
5: for all node N in φ, ordered from the sink to the root, excluding the sink do
6: let xi = Var(N)
7: for all vj ∈ Dom(xi), in decreasing order do
8: if ∃E ∈ Out(N), vj ∈ Lbl(E) then
9: add to φbin a node N j

i labeled by xji
10: add to N j

i an outgoing edge labeled by {1} and pointing to the corre-
sponding node of Dest(E) (the corresponding node of φ’s sink being
φbin’s sink)

11: if N ′ has been defined then
12: add to N j

i an outgoing edge labeled by {0} and pointing to N ′

13: set N ′ := N j
i

14: let N ′ be the corresponding node of N in φbin
15: set Root(φbin) to be the corresponding node of Root(φ)
The return diagram φbin is obviously an MDD{0,1},<, the order being x11 < · · · <
xk11 < . . . < x1n < · · · < xknn . Its size is polynomial in the one of the original
MDD, each x-node being replaced by at most |Dom(x)| nodes having at most two
outgoing edges. The procedure runs in polytime (each domain value is explored once
for each node).

Let us denote Xbin the set of binary variables we introduced; an acceptable assign-
ment ~xbin of the variables from Xbin is defined as follows: for each variable xi ∈ X ,

there is exactly one of the xji that takes the value 1 in ~xbin. Formally, it is an assignment
~xbin ∈ Dom(

⋃
xi∈X

⋃kxi
j=1 x

j
i) verifying:

∀xi ∈ X, |{j/~xbin(xji) = 1}| = 1.

We denote Dombin(X) the set of acceptable assignments of Xbin. By construction,
there is a bijection between Dom(X) and Dombin(X), and for each model of φ, its
corresponding assignment in Dombin(X) is a model of φbin, and reciprocally. Thus,
given two MDDs φ and ψ and their matching φbin and ψbin, it holds that φ ≡ ψ ⇔
φbin ≡ ψbin.

Now, MDD{0, 1} ∼P OBDD, and OBDD supports EQ (Lemma 8.14 of [MT98]). For
testing the equivalence of two MDDs φ andψ, we only have to build their corresponding
φbin and ψbin (which is done in polytime), transform them into OBDDs, and check
whether they are equivalent; it is the case if and only if φ ≡ ψ. �

MDD does not support SE. MDD does not satisfy SE, since MDD{0,1} ≤P OBDD (Lemma A.10)
and OBDD does not satisfy SE unless P = NP. �

B.7 Queries on MDD<

MDD< supports CO, VA, CE, IM, EQ, MX, CX, CT, ME. All these operations are
supported, since MDD< ⊆ MDD. �

MDD< supports SE. Checking whether an MDD φ entails another MDD ψ is equivalent
to checking whether ¬φ ∨ ψ is valid. Since MDD< satisfy ∨BC, ¬C and VA, it also
satisfy SE. �

B.8 Conditioning

The proof of CD is based on the equivalence between (semantic) conditioning as de-
fined in Definition 3.4 and the following notion of syntactic conditioning:

Definition B.2 (Syntactic conditioning). Let φ be an SD, Y ⊆ Var(φ) and ~y a Y -
assignment. We denote φ|~y the SD obtained by (i) replacing, for each node N such as
Var(N) ∈ Y , its label by Y and the label of each E ∈ Out(N) by {0} if ~y(Var(E)) ∈
Lbl(E) and by ∅ otherwise.

Lemma B.3 (Syntactic conditioning is linear). φ|~y is obtained in linear time.

Proof. It is trivial, since each node and each edge is scanned at most once. ut

Lemma B.4 (Syntactical conditioning provides a semantical conditioning). φ|~y is a
conditioning of φ by ~y.

Proof. By definition of the conditioning, ~z ∈ Dom(Var(φ) \ {Y }) is a model of I(φ)|~y
iff ~y.~z is a model of φ.

Suppose that ~y.~z is a model of φ. Then there is in φ a path p such that ~z.~y |= p. By
construction, a copy p|~y of p exists in φ|~y and ~z |= p|~y: ~z is a model of φ|~y .

Suppose that ~y.~z is a not model of φ: for any path p in φ, there is an edge E on this
path such that ~y.~z(Var(E)) /∈ Lbl(E). Recall that the paths in φ|~y are the same than
those in φ and let p|~y be the one corresponding to p. If Var(E) ∈ Y , ~y.~z(Var(E)) /∈
Lbl(E) has led to label the corresponding edge in φ|~y by ∅: ~z cannot be compatible
with this path. If Var(E) ∈ Y , ~y.~z(Var(E)) /∈ Lbl(E) means that ~z(Var(E)) /∈
Lbl(E): because these edges remain unchanged, ~z cannot be compatible with this path.
Therefore ~z is not compatible with any path in φ|~y: ~z is not a model of φ|~y .

Hence I(φ|~y) = I(φ)|~y . ut

SD supports CD, SCD. This is a direct consequence of Lemmas B.4 and B.3. Note
that these transformations are supported in linear time. �

FSD supports CD, SCD. Let φ be an FSD, Y ⊆ Var(φ) and ~y a Y -assignment. Let
φ∗|~y be the FSD obtained by suppressing ∅-labeled edges and their subgraphs in φ|~y . We
show that φ∗|~y is focusing.

Indeed, in φ∗|~y the only edges that have been modified are those whose correspond-
ing edge in φ is associated with a variable in Y . In φ∗|~y , they are all associated with Y
and labeled {1} (since we removed ∅-labeled edges).

As for the other edges in φ∗|~y , since they all remain unchanged, they are still focus-
ing. It is thus obvious that φ∗|~y is focusing w.r.t. all variables in Var(φ) \Y = Var(φ∗|~y).
Then Lemma A.4 shows that φ|~y is focusing.

As I(φ|~y) = I(φ∗|~y) = I(φ)|~y and since φ∗|~y is obtained in linear time, we get that
FSD supports CD (and hence SCD) in linear time. �

dSD supports CD, SCD. Let φ be a dSD, Y ⊆ Var(φ) and ~y a Y -assignment. We
show that φ|~y is deterministic.

Let us consider a node N|~y in φ|~y , and denote N its corresponding node in φ. If the
two nodes are the same, N|~y is obviously deterministic. Suppose it has been modified:
it is now labeled by Y. Since the outgoing edges of N are labeled by disjoint sets, at
most one of them can include the value ~y(Var(N)). Consequently, at most one of N|~y’s
outgoing edges can be labeled by a non-empty set. This proves that φ|~y is deterministic.

As I(φ|~y) = I(φ)|~y and since φ|~y is obtained in linear time, it holds that dSD supports
CD (and hence SCD) in linear time. �

dFSD satisfies CD, SCD. Let φ be a dFSD, Y ⊆ Var(φ) and ~y a Y -assignment.
The two previous proofs (kcfdSD satisfies CD, FSD satisfies CD) show that φ|~y is
deterministic when φ is and that φ|~y is focusing when φ. Hence φ|~y is a dFSD.

As I(φ|~y) = I(φ)|~y and since φ|~y is obtained in linear time, it holds that dFSD
supports CD (and hence SCD) in linear time. �

MDD and MDD< support CD, SCD. The procedure described above still works here, as
it preserves determinism and obviously variable ordering. �

B.9 Negation

Algorithm 4 Given a dSD φ, builds a dSD called compl(φ)

1: let ψ be the sink-only graph.
2: for all node N in φ, ordered from the sink to the root, excluding the sink do
3: create a node N ′ labeled by the same variable x as N .
4: Let U := Dom(x) \

⋃
E∈Out(N) Lbl(E)

5: if U 6= ∅ then
6: add to N ′ an outgoing edge Ecompl labeled by U and pointing to the sink of ψ
7: for all edge E in φ coming out of N do
8: let D = Dest(E)
9: if D has a corresponding node D′ in ψ then

10: add to N ′ an outgoing edge E′ labeled by Lbl(E) and pointing to D′

11: if N ′ has at least one outgoing edge then
12: add N ′ to ψ
13: if Root(φ) has no corresponding node in ψ then
14: return ψ
15: else
16: let Root(ψ) be the corresponding node of Root(φ)
17: return ψ

Lemma B.5. The following properties hold:

– Algorithm 4 preserves determinism;
– Algorithm 4 runs in time polynomial in |φ|;
– for each dSD φ, compl(φ) ≡ ¬φ.

Proof.

– Determinism: This is obvious, as we do not add nodes, and only add edges that are
disjoint with the other edges coming out of a given node.

– Complexity: Each node is encountered once. The size of union U is bounded by
the size of the variable’s domain. Hence the size of the Ecompl edge is bounded by
|φ|. In the worst case, there is an Ecompl edge for each node of compl(φ); the total
size of these added edges is bounded by |φ|2.

– Equivalence: We prove this by induction on the number of nodes of φ. For n ∈
N, let P(n) be the following proposition: “For any dSD φ containing n nodes,
compl(φ) ≡ ¬φ”. P(n) is obviously true for n ≤ 2. Let n ≥ 3, and suppose that
P(k) is true for all k < n.
Let us denoteR the root of φ,R′ its corresponding node in compl(φ), and Var(R) =
x. We consider an assignment ~y ∈ Dom(Var(φ)). We can meet two cases:
• if there exists an edge E ∈ Out(R) that is compatible with ~y, as φ is deter-

ministic, it means that ~y ∈ Mod(φ) ⇔ ~y ∈ Mod(φD), with φD the subgraph
rooted at D = Dest(E). By construction of compl(φ), if there is no corre-
sponding edge E′ in compl(φ), it means that compl(φD) = ∅, and if there

is one, it means that compl(φD) = φ′D, with D′ = Dest(E′). Using our in-
duction hypothesis (φD has at most n nodes), compl(φD) ≡ ¬φD, and thus
~y ∈ Mod(φD) ⇔ ~y /∈ compl(φD). As compl(φ) is also deterministic, we
have ~y /∈ compl(φD)⇔ ~y /∈ compl(φ), and by putting the pieces together we
get ~y ∈ Mod(φ)⇔ ~y /∈ compl(φ).

• if it is not the case, then obviously ~y /∈ Mod(φ). Now, by construction, we
know that there exists an edge Ecompl coming out of R′ and compatible with
assignments that are compatible with no edge in Out(R), that points to the
sink of compl(φ). Thus ~y ∈ Mod(compl(φ)), therefore ~y ∈ Mod(φ) ⇔ ~y /∈
compl(φ).

In all cases, ~y ∈ Mod(φ)⇔ ~y /∈ compl(φ) holds, hence compl(φ) ≡ ¬φ.
Since both the basis and the inductive step have been proven, we showed by induc-
tion that P(n) holds for all n ∈ N.

ut

FSD does not support ¬C. By negating a CNF one obtains a DNF, that is polynomially
translatable into an FSD (Proposition 2.11). Thus, if FSD satisfied ¬C, we could, for
any CNF, build an equivalent FSD in polytime. As FSD supports CO, we would have
a polytime algorithm for deciding whether a CNF is consistent, which is impossible
unless P = NP. �

dSD supports ¬C. Straightforward from Lemma B.5. �

MDD and MDD< support ¬C. Algorithm 4 preserves the ordering of the variables. �

B.10 Conjunction

SD supports ∧C, ∧BC. To make the conjunction of k SDs φ1, . . . , φk, replace the sink
of φi by the root of φi+1, for all 1 ≤ i ≤ k − 1. The root of the new SD is the one of
φ1, its sink the one of φk. Note that this process is linear. �

dSD supports ∧C, ∧BC. To make the conjunction of k dSDs, use the previous poly-
time procedure: the result is obviously a dSD, since no edge is modified or added. The
process is also linear. �

FSD does not support ∧C, ∧BC. Thanks to Prop. 2.12, any OBDD can be turned into
an equivalent FSD in polytime. If FSD supported ∧BC, we would have a polytime
algorithm to decide whether the conjunction of two OBDDs (the variable orderings
being possibly different in each OBDD) is consistent, forasmuch as FSD supports CO;
yet, this problem is NP-complete, as shown in Lemma 8.14 of [MT98]. Therefore FSD
does not support ∧BC, and a fortiori does not support ∧C, unless P = NP. �

dFSD does not support ∧C, ∧BC. Same proof as for FSDs, since any OBDD can be
turned into an equivalent dFSD in polytime (Prop. 2.12) and dFSD supports CO. �

MDD does not support ∧C, ∧BC. Since MDD{0,1} ∼P OBDD (Lemma A.10), as OBDD

does not support ∧C, and does not support ∧BC unless P = NP, it is the same for MDD.
�

MDD< does not support ∧C. Since MDD{0,1},< ∼P OBDD< (Lemma A.10), as OBDD<
does not support ∧C, MDD< does not either. �

Algorithm 5 conjunct step(N1, N2): returns a MDD< that is the conjunction of the
two MDDs< of which N1 and N2 are roots.
1: if the cache contains the key (N1, N2) then
2: return the MDD corresponding to this key in the cache
3: if N1 is the sink then
4: let φ be the MDD rooted at N2

5: else if N2 is the sink then
6: let φ be the MDD rooted at N1

7: else if Var(N1) < Var(N2) then
8: create a node N ′1 labeled by Var(N1)
9: for all E ∈ Out(N1) do

10: let φE := conjunct step(Dest(E), N2)
11: add an edge coming out of N ′1, labeled by Lbl(E) and pointing to the root of φE

12: let φ be the MDD rooted at N ′1
13: else if Var(N1) > Var(N2) then
14: create a node N ′2 labeled by Var(N2)
15: for all E ∈ Out(N2) do
16: let φE := conjunct step(N1,Dest(E))
17: add an edge coming out of N ′2, labeled by Lbl(E) and pointing to the root of φE

18: let φ be the MDD rooted at N ′2
19: else
20: create a node N ′ labeled by x = Var(N1) = Var(N2)
21: for all v ∈ Dom(x) do
22: if there are edges E1 ∈ Out(N1) and E2 ∈ Out(N2) such that v ∈ Lbl(E1) and

v ∈ Lbl(E2) then
23: let φv := conjunct step(Dest(E1),Dest(E2))
24: add an edge coming out of N ′, labeled by {v} and pointing to the root of φv

25: let φ be the MDD rooted at N ′

26: add φ to the cache, at the key (N1, N2)
27: return φ

MDD< supports ∧BC. We can use Algorithm 5, adapted from the one on OBDDs
[Bry86]. It applies on non-empty MDDs of a same variable order (if one MDD is empty,
it is trivial to compute the conjunction). A cache is maintained to avoid computing twice
the same couple of nodes, thus conjunct step is not called more than |φ1| · |φ2| times.
When the couple of nodes bear on the same variable, each value of its domain is ex-
plored once, and the size of the domain is lower than either |φ1| or |φ2| (by definition
of the size function). The procedure is hence polytime. �

B.11 Disjunction

SD supports ∨C, ∨BC. To make the disjunction of k SDs φ1, . . . , φk, simply define a
new node, say N , labeled by Y. Then, for each φi, add an edge from N to Root(φi)
labeled by {0}. Fuse the sink nodes of the φi into a single one. This process is linear
(this will be useful for the proof of SFO). �

FSD supports ∨C, ∨BC. Use the same procedure. If the φi are focusing, the resulting
SD is also obviously focusing. As for SDs, the process is linear. �

dSD supports ∨C, ∨BC. This holds since dSD satisfies ∧C and ¬C. Indeed, to make
the disjunction of φ1, . . . φn, compute the negation of each disjunct (dSD satisfies ¬C),
then make their conjunction (dSD satisfies ∧C in linear time), and again compute the
negation of the result. �

dFSD does not support ∨C, ∨BC. If dFSD supported ∨BC, we would have a polytime
algorithm to decide whether the conjunction of two OBDDs φ1 and φ2 (the variable
orderings being possibly different in each OBDD) is consistent. Indeed, φ1 ∧ φ2 is
consistent iff ¬φ1 ∨ ¬φ2 is valid. We can obtain in polytime OBDDs representing ¬φ1
and ¬φ2 (switch the labels of the leaves). Now, thanks to Prop. 2.12, any OBDD can be
turned into an equivalent dFSD in polytime, so we can get dFSDs representing ¬φ1 and
¬φ2; As dFSD supports VA, if it supported ∨BC, we could check whether ¬φ1 ∨ ¬φ2
is valid, and thus whether φ1 ∧ φ2 is consistent. Yet, this problem is NP-complete, as
shown in Lemma 8.14 of [MT98]. Therefore dFSD does not support ∨BC, and a fortiori
does not support ∨C, unless P = NP. �

MDD does not support ∨C, ∨BC. Since MDD{0,1} ∼P OBDD (consequence of Lemma A.10),
as OBDD does not support ∨C, and does not support ∨BC unless P = NP, it is the same
for MDD. �

MDD< does not support ∨C. Since MDD{0,1},< ∼P OBDD< (Lemma A.10), as OBDD<
does not support ∨C, MDD< does not either. �

MDD< supports ∨BC. This comes from the fact that MDD< supports both ∧BC and ¬C:
we just have to compute ¬(¬φ1 ∧ ¬φ2). �

B.12 Forgetting

Lemma B.6. forget(I, {x}) = ∨~x∈Dom({x}) I|~x.

Proof. Straightforward from the definition: let W = X \ {x}. forget(I, {x}) = I↓W .
Then forget(I, {x})(~w) = > iff ∃~x ∈ Dom({x}) such that I(~w.~x) = >. Hence
forget(I, {x}) = ∨~x∈Dom({x}) I|~x. ut

SD does not support FO. Given any SD φ, φ is consistent iff forget(I(φ),Var(φ)) ≡ >.
The only reduced SDs without any variable are the empty and the sink-only graph, and
testing the emptyness of an SD is done is constant time. If SD were satisfying FO, we
would have a polytime algorithm for deciding the consistency of any SD, yet SD does
not satisfy CO unless P = NP. �

dSD does not support FO. Same proof as the previous one (dSD does not satisfy CO

unless P = NP). �

SD supports SFO. From Lemma B.6, it holds that forget(I, {x}) = ∨~x∈Dom({x}) I|~x.
Let n = |Card(Dom(x))|; to obtain an SD whose interpretation function is equal to
forget(I, {x}), it is sufficient to make n simple conditionings and n − 1 disjunctions.
These two operations are linear (since SD satisfies SCD and ∨BC in linear time), and
n is linear in |φ|, thus SFO is feasible in time polynomial in |φ|. �

dSD supports SFO. Same proof as the previous one (dSD satisfies SCD and ∨BC in
linear time). �

dFSD does not support SFO, FO. Let φ1 and φ2 be two dFSDs. Let Z = Var(φ1) ∪
Var(φ2), and a variable x /∈ Z of domain {0, 1}. We build the SD ψ by merging the
sinks of φ1 and φ2, and adding a node which will be the root of ψ, labeled by x, with
one outgoing edge labeled by {0} and pointing to the root of φ1, and a second outgoing
edge labeled by {1} and pointing to the root of φ2. ψ is obviously focusing, since φ1
and φ2 are, and x is mentioned in one node only, and deterministic, since φ1 and φ2 are,
and our new root is.

We will prove that forget(I(ψ), {x} = I(φ1) ∨ I(φ2), i.e. for any Z-assignment ~z,
(I(φ1) ∨ I(φ2))(~z) = > ⇔ ∃~x ∈ Dom({x}), I(ψ)(~x.~z) = >.

(⇒) Let ~z be a Z-assignment verifying (I(φ1) ∨ I(φ2))(~z) = >. Either I(φ1)(~z) =
>, or I(φ2)(~z) = >. In the first case, let us take ~x such that ~x(x) = 0: by con-
struction there exists a path in ψ that is compatible with ~x.~z. Symmetrically, in the
second case, taking ~x such that ~x(x) = 1, there exists a path in ψ that is compatible
with ~x.~z. Hence, there always exists a ~x such that I(ψ)(~x.~z) = >.

(⇐) Let ~z be a Z-assignment verifying (I(φ1) ∨ I(φ2))(~z) = ⊥. Let ~x be a {x}-
assignment: either ~x(x) = 0, in which case I(ψ)(~x.~z) = ⊥, as I(φ1)(~z) = ⊥; or
~x(x) = 1, in which case I(ψ)(~x.~z) = ⊥ too, because this time I(φ2)(~z) = ⊥.
Hence there always exists no ~x such that I(ψ)(~x.~z) = >.

We thus proved that forget(I(ψ), {x}) = I(φ1) ∨ I(φ2). It is possible to build ψ in
time linear in the size of φ1 and φ2. Therefore, if dFSD supported SFO, we would have
a polytime algorithm allowing to build a dFSD equivalent to the disjunction of two
dFSDs. Yet it is impossible, unless P = NP (see ∨BC). Hence dFSD does not support
SFO, and a fortiori FO, unless P = NP. �

MDD< and MDD do not support SFO, FO. The proof can be done in a similar fash-
ion, building ψ from k MDDs< with a root variable having a domain of size k. ψ is
obviously an MDD bearing on the same variable order (with the root variable being
inferior to all other variables). If MDD< supported SFO, we would have a polytime al-
gorithm allowing to build an MDD< equivalent to the disjunction of k MDDs<, which
is impossible. Thus MDD< does not support SFO, and a fortiori FO.

This also proves the result for MDD, as only one MDD is considered for this trans-
formation. �

FSD supports FO, SFO. Let ψ be any reduced FSD such that Var(ψ) 6= ∅, and let
x ∈ Var(ψ). We denote ψ↓x the FSD obtained by changing every x-labeled node in ψ
by an Y-labeled node and every outgoing edge of such nodes by a {0}-labeled edge. We
will show that I(ψ↓x) = forget(I(ψ), {x}).

Let Z = Varψ \ {x}. We have to prove that

∀~z ∈ Dom(Z), I(ψ↓x)(~z) = > ⇔ ∃~x ∈ Dom({x}), I(ψ)(~x.~z) = >

Let ~z be any Z-assignment:

(⇒) if I(ψ↓x)(~z) = >, there is a path p in ψ↓x that is compatible with ~z. Let us
denote as p′ the path in ψ that corresponds to p. Obviously, ~z is compatible with p′:
nodes labeled with variables in Z are not modified.
If p′ contains no x-node, then any ~x ∈ Dom({x}) trivially satisfies the require-
ment I(ψ)(~x.~z) = >. Otherwise, p′ contains x-edges the labels of which are not
disjoint (ψ is reduced and focusing), so we can also find ~x ∈ Dom({x}) such that
I(ψ)(~x.~z) = >.

(⇐) if I(ψ↓x)(~z) = ⊥, there is no path in ψ↓x that is compatible with ~z. Let us
suppose there exists ~x ∈ Dom({x}) such that I(ψ)(~x.~z) = >. Then, there is path
p in ψ which is compatible with both ~x and ~z. In ψ↓x, the x-nodes have been
replaced by Y-nodes, and the Z-nodes have not been modified. Hence, the path
p′ in ψ↓x that corresponds to p is compatible with ~z. This is contradictory, since
we supposed I(ψ↓x)(~z) = ⊥. Consequently, there is no ~x ∈ Dom({x}) such that
I(ψ)(~x.~z) = >.

The process of obtaining ψ↓x is linear, and we can forget as many variables as we
need with a single traversal of the graph, hence FSD supports FO and thus SFO. �

B.13 Ensuring

Lemma B.7. ensure(I, {x}) = ∧~x∈Dom({x}) I|~x.

Proof. Straightforward from the definition: let W = X \ {x}. ensure(I, {x}) = I⇓W .
Then ensure(I, {x})(~w) = > iff ∀~x ∈ Dom({x}) it holds that I(~w.~x) = >. Hence
ensure(I, {x}) = ∧~x∈Dom({x}) I|~x. ut

SD does not support EN. Given any SD φ, φ is valid iff ensure(I(φ),Var(φ)) ≡ >.
Again, the only reduced SDs without any variable are the empty and the sink-only
graphs. If SD were satisfying EN, we would have a polytime algorithm for deciding the
validity of any SD, yet SD does not support VA unless P = NP. �

dSD does not support EN. Same proof as the previous one (dSD does not support VA

unless P = NP). �

SD supports SEN. From Lemma B.6, it holds that ensure(I, {x}) = ∧~x∈Dom({x}) I|~x .
Let n = |Card(Dom(x))|; to obtain an SD whose interpretation function is equal to
ensure(I, {x}). it is sufficient to make n simple conditionings and n− 1 conjunctions.
These two operations are linear, and n is linear in |φ|, thus SEN is feasible in time
polynomial in |φ|. �

dSD supports SEN. Same proof as the previous one (dSD satisfies SCD and ∧BC in
linear time). �

FSD does not support SEN, EN. Let φ1 and φ2 be two FSDs.
Let Z = Var(φ1) ∪Var(φ2), and a variable x /∈ Z of domain {0, 1}.
We build the graph ψ by merging the sinks of φ1 and φ2, and adding a node which

will be the root of ψ, labeled by x, with one outgoing edge labeled by {0} and pointing
to the root of φ1, and a second outgoing edge labeled by {1} and pointing to the root of
φ2.

ψ is obviously focusing, since φ1 and φ2 are, and x is mentioned in one node only.
Let ~x be the 0 assignment of {x} and ~x′ be the 1 assignment of {x}
By construction, I(φ1) = I(ψ|~x) (i.e. ~z is a model of I(φ1) iff ~z(x) = 0). Similarly,

I(φ2) = I(ψ|~x′) (i.e. ~z is a model of I(φ1) iff ~z(x) = 1).
From Lemma B.7, it holds that ensure(I, {x}) = ∧~x∈Dom({x}) I|~x)

Hence ensure(I(ψ), {x}) = I(ψ|~x) ∧ I(ψ|~x′), that is to say: ensure(I(ψ), {x}) =
I(φ1) ∧ I(φ2).

It is possible to build ψ in time linear in the size of φ1 and φ2. Therefore, if FSD
supported SEN, we would have a polytime algorithm allowing to build an FSD equiv-
alent to the conjunction of two FSDs. Yet it is impossible, unless P = NP (see ∧BC).
Hence FSD does not support SEN, and a fortiori EN, unless P = NP. �

dFSD does not support SEN, EN. The proof is similar the previous one, from two
dFSDs φ1 and φ2 — the previous construction of ψ is a dFSD. �

MDD< and MDD do not support SEN, EN. Again, the proof is similar, building ψ from
k MDDs< with a root variable having a domain of size k. ψ is obviously an MDD
bearing on the same variable order (with the root variable being inferior to all other
variables). If MDD< supported SEN, we would have a polytime algorithm allowing to
build an MDD< equivalent to the conjunction of k MDDs<, which is impossible. Thus
MDD< does not support SEN, and a fortiori EN.

This also proves the result for MDD, as only one MDD is considered for this trans-
formation. �

