Problem	IAs	Policy	FIAs	Construction	Results

Knowledge Compilation Using Interval Automata and Applications to Planning

Alexandre Niveau Hélène Fargier Cédric Pralet Gérard Verfaillie

August 19th, 2010

Problem	IAs	Policy	FIAs	Construction	Results
Outline					

- Introduction to the problem
 - 2 Interval Automata
- Exploitation of a policy
- 4 Focusing interval automata
- 5 Building FIAs
- 6 Results

4 B 6 4 B 6

= 900

Problem	IAs	Policy	FIAs	Construction	Results
00000					
Autonomo	us System	n Control			

Control of autonomous systems: *decision-making tasks*, depending on the current observations and goals.

Decision-making has to be performed *online*, however, it is often combinatory.

Problem	IAs	Policy	FIAs	Construction	Results
00000					
Autonomo	us System	n Control			

Control of autonomous systems: *decision-making tasks*, depending on the current observations and goals.

Decision-making has to be performed *online*, however, it is often combinatory.

- Performing these tasks *completely online*: compromise the *reactivity* of the system;
- Computing them *offline* (anticipating every possible situation): problematic regarding the limited size of embedded memory.

A possible way to solve this dilemma is to use *knowledge compilation*.

Problem	IAs	Policy	FIAs	Construction	Results
00000					
Principle o	of Knowled	dge Compil	ation		

Knowledge compilation

- Idea: transforming the problem offline into a form that is tractable online.
- The problem is "translated" into a certain formalism (or *language*).
- This representation allows necessary operations to be tractable, while being as compact as possible.

Using compilation offline, one carries out computational parts before the system's setting up.

4 3 5 4

Framework: strong non-deterministic planning

We want to embed a complete solution, in the form of a *decision policy*, *i.e.* a relation associating actions to each reachable state.

A B A B A B B A Q A

Framework: strong non-deterministic planning

We want to embed a complete solution, in the form of a *decision policy*, *i.e.* a relation associating actions to each reachable state.

- \longrightarrow Boolean function, involving two kinds of variables:
 - *state* variables *S*;
 - decision variables D.

For some given \vec{s} and \vec{d} , the function returns "true" iff decision \vec{d} is convenient in state \vec{s} .

4 B 6 4 B 6

Many compilation structures could be used this way:

- finite-state automata;
- the binary decision diagrams family (BDDs, FBDDs, OBDDs...);
- the NNF family (DNNFs, d-DNNFs...)...
- \longrightarrow Boolean or enumerated variables only.

NOR SEASE SEA OOR

Many compilation structures could be used this way:

- finite-state automata;
- the binary decision diagrams family (BDDs, FBDDs, OBDDs...);
- the NNF family (DNNFs, d-DNNFs...)...
- \longrightarrow Boolean or enumerated variables only.

However, continuous variables involved in many real applications (time, energy. . .).

Goal: define new structures representing Boolean functions bearing on continuous (or large enumerated domain) variables.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わへや

Problem	IAs	Policy	FIAs	Construction	Results
00000					
Outline					

- 1 Introduction to the problem
- Interval Automata
- Exploitation of a policy
- 4 Focusing interval automata
- 5 Building FIAs

Problem	lAs	Policy	FIAs	Construction	Results
Outline					

Interval Automata

Exploitation of a policy

4 Focusing interval automata

5 Building FIAs

6 Results

= 200

We have described the interval automata language (IA). Hypothesis: variable domains are *finite* union of closed intervals from \mathbb{R} .

Interval automaton

An *interval automaton* (IA) is a couple $\phi = \langle X, \Gamma \rangle$, with

- X a finite and totally ordered set of variables;
- Γ a directed acyclic graph with at most one root and at most one leaf (the sink), whose non-leaf nodes are labelled by a variable of X or by the disjunctive symbol ∨, and whose edges are labelled by a closed interval from ℝ.

Interpretation function of an interval automaton

[62, 85]

[4, 13]

[79, 94]

ų

[23, 48]

The *interpretation function* of an interval automaton ϕ on X is the function $I(\phi)$ from Dom(X) to $\{\top, \bot\}$ defined as follows: for every X-assignment \vec{x} , $I(\phi)(\vec{x}) = \top$ if and only if there exists a path p from the root to the sink of ϕ such that for each edge E along p, either $Var(E) = \lor$ and $Itv(E) \neq \emptyset$, or $\vec{x}(Var(E)) \in Itv(E)$.

We described several operations allowing to reduce an IA's size without changing its semantics.

We described several operations allowing to reduce an IA's size without changing its semantics.

Isomorphic nodes

Two nodes N_1 , N_2 of an IA ϕ are *isomorphic* iff $Var(N_1) = Var(N_2)$ and there exists a bijection σ from $Out(N_1)$ onto $Out(N_2)$, s.t. $\forall E \in Out(N_1)$, $Itv(E) = Itv(\sigma(E))$ and $Dest(E) = Dest(\sigma(E))$.

We described several operations allowing to reduce an IA's size without changing its semantics.

Isomorphic nodes

Two nodes N_1 , N_2 of an IA ϕ are *isomorphic* iff $Var(N_1) = Var(N_2)$ and there exists a bijection σ from $Out(N_1)$ onto $Out(N_2)$, s.t. $\forall E \in Out(N_1)$, $Itv(E) = Itv(\sigma(E))$ and $Dest(E) = Dest(\sigma(E))$.

Problem	IAs	Policy	FIAs	Construction	Results
	000000				
Reduction	of an IA:	merging c	of contiguo	us edges	

Contiguous edges

Two edges E_1 , E_2 of an IA ϕ are *contiguous* iff $Src(E_1) = Src(E_2)$, $Dest(E_1) = Dest(E_2)$ and there exists an interval $I \in \mathbb{R}$ s.t. $Itv(E_1) \cup Itv(E_2) = I \cap Dom(Var(E_1))$.

Problem	IAs	Policy	FIAs	Construction	Results
	000000				
Reduction	of an IA:	merging	of contiguo	us edges	

Contiguous edges

Two edges E_1 , E_2 of an IA ϕ are *contiguous* iff $Src(E_1) = Src(E_2)$, $Dest(E_1) = Dest(E_2)$ and there exists an interval $I \in \mathbb{R}$ s.t. $Itv(E_1) \cup Itv(E_2) = I \cap Dom(Var(E_1))$.

▲御▶▲≡▶▲≡▶ ≡⊨ めぬゆ

Problem	IAs	Policy	FIAs	Construction	Results
	000000				
Reduction	of an IA				

Merging of stammering nodes:

* 注 > * 注 >

三日 のへの

Problem	IAs	Policy	FIAs	Construction	Results
	000000				
Reduction	of an IA				

Merging of stammering nodes:

Elimination of undecisive nodes:

Elimination of unreachable edges (here $Dom(x) = \mathbb{R}_+$):

Problem	IAs	Policy	FIAs	Construction	Results
	000000				
Reduction	of an IA				

Merging of stammering nodes:

Elimination of undecisive nodes:

Elimination of unreachable edges (here $Dom(x) = \mathbb{R}_+$):

$$x \xrightarrow{[-10, -2.5]} \Rightarrow \emptyset$$

Proposition: reduction of an IA

There exists a polytime algorithm transforming any IA into an equivalent reduced IA.

IAs are a generalization of BDDs to continuous variables: BDDs are particular IAs (Boolean variables, deterministic nodes).

As in a BDD, a variable can be repeated on a path, and the order is not important.

医下子 医

Problem	IAs	Policy	FIAs	Construction	Results
Outline					

- 1 Introduction to the problem
- Interval Automata
- Exploitation of a policy
- 4 Focusing interval automata
- 5 Building FIAs

6 Results

4 E 6 4 E 6

= 200

Problem	IAs	Policy	FIAs	Construction	Results
		0000			
Using a p	olicy				

Two operations needed online:

- conditioning (assign state variables according to the observations);
- model extraction (produce one decision among the possible ones).

Problem	lAs	Policy	FIAs	Construction	Results
00000	000000	0000	000	00	0000
Using a po	olicy				

Two operations needed online:

- conditioning (assign state variables according to the observations);
- model extraction (produce one decision among the possible ones).

Illustration on a simple example, with three state variables x, y, z and three decision variables A, B, C:

 Problem
 IAs
 Policy
 FIAs
 Construction
 Results

 00000
 0000
 0000
 0000
 0000
 0000

We observe the state x = 17, y = 6, z = 8.

 \longrightarrow Conditioning of the policy :

► < = ►</p>

10110

 Problem
 IAs
 Policy
 FIAs
 Construction
 Results

 00000
 0000
 0000
 0000
 0000
 0000

We observe the state x = 17, y = 6, z = 8.

 \longrightarrow Conditioning of the policy :

< = ▶

ъ

 Problem
 IAs
 Policy
 FIAs
 Construction
 Results

 00000
 0000
 0000
 0000
 0000
 0000

We observe the state x = 17, y = 6, z = 8.

 \longrightarrow Conditioning of the policy :

< = ▶

ъ

 Problem
 IAs
 Policy
 FIAs
 Construction
 Results

 cooco
 cooco
 cooco
 cooco
 cooco
 cooco

We observe the state x = 17, y = 6, z = 8.

 \longrightarrow Conditioning of the policy :

- < = >

ъ

 Problem
 IAs
 Policy
 FIAs
 Construction
 Results

 cooco
 cooco
 cooco
 cooco
 cooco
 cooco

We observe the state x = 17, y = 6, z = 8.

 \longrightarrow Conditioning of the policy :

Problem	IAs	Policy	FIAs	Construction	Results
		0000			
Conditi	oning				

We observe the state x = 17, y = 6, z = 8.

 \longrightarrow Conditioning of the policy :

Problem	IAs	Policy	FIAs	Construction	Results
		0000			
Model ext	raction				

We obtain a set of suitable decisions. We need to chose one of them:

Problem	IAs	Policy	FIAs	Construction	Results
		0000			
Model ext	raction				

We obtain a set of suitable decisions. We need to chose one of them:

Problem	IAs	Policy	FIAs	Construction	Results
		0000			
Model ext	raction				

We obtain a set of suitable decisions. We need to chose one of them:

Problem	IAs	Policy	FIAs	Construction	Results
		0000			
Model ext	raction				

We obtain a set of suitable decisions. We need to chose one of them:

Problem: paths in an IA (even reduced) can be inconsistent.

A reduced IA can even have no consistent path at all:

Same as for BDDs, this makes model extraction hard.

 \longrightarrow restriction on IAs, to make this operation easier.

Problem	lAs	Policy	FIAs	Construction	Results
Outline					

- 1 Introduction to the problem
- 2 Interval Automata
- Exploitation of a policy
- 4 Focusing interval automata
- 5 Building FIAs

6 Results

4 B 6 4 B 6

Problem IAs Policy FIAs Construction Results 00000 FOCUSING interval automata (FIAs)

Idea: force intervals to shrink along a path; this property is called *focusingness*.

Focusing interval automaton

An IA is *focusing* iff for each edge *E*, all edges *E'* on a path from the root to Src(E) such that Var(E) = Var(E') verify $Itv(E) \subseteq Itv(E')$.

FIAs (focusing IAs) allow the two desired operations (conditioning and model extraction) in polytime.

Each path of a reduced FIA corresponds to at least one model:

This restriction makes model extraction easy, in the same manner as the "read-once" property on BDDs (which gives FBDDs).

FBDDs (and OBDDs) are particular FIAs.

4 3 6 4 3

Problem
occordIAs
occordPolicy
occordFIAs
occordConstruction
occordResults
occordOperations supported by IAs and FIAs

Table of supported operations:

				Transformations	IA	FIA	DNNF
Queries	IA	FIA	DNNF	CD (conditioning)			
CO(consistency)	0		\checkmark	$\wedge tC(conj. with a term)$			
VA (validity)	0	0	0	FO (forgetting)	0		
EQ (équivalence)	0	0	0	SFO(simple forg.)			\checkmark
MC(model checking)			\checkmark	EN (ensuring)	0	0	0
MX(model extr.)	0		$$	SEN(simple ens.)		0	0
CX (context extr.)	0		$ \sqrt{ }$	$\wedge C(conjunction)$		0	0
ME(model enum.)	0		$ $	∧ BC (binary conj.)		0	0
				$\lor \mathbf{C}(disjunction)$		$\overline{\mathbf{v}}$	\checkmark

 \surd means "supports in polytime", \circ "does not support, except if $\mathsf{P}=\mathsf{N}\mathsf{P}$ ".

4 E 6 4 E 6

Problem	IAs	Policy	FIAs	Construction	Results
Outline					

- 1 Introduction to the problem
- 2 Interval Automata
- 3 Exploitation of a policy
- 4 Focusing interval automata
- 5 Building FIAs

4 B 6 4 B 6

Problem	IAs	Policy	FIAs	Construction	Results
				•0	
Building	FIAs by	"pushing	boxes"		

Using an algorithm provides a list of admissible boxes:

• It is straightforward to build the FIA representing a "box"

 $[0,1]\times[8.7,34.5]\times[11,43]\times[1,1.2]$

• Disjunction (\lor **C**) is easy on FIAs

Problem	IAs	Policy	FIAs	Construction	Results
				•0	
Building	FIAs by	"pushing	boxes"		

Using an algorithm provides a list of admissible boxes:

• It is straightforward to build the FIA representing a "box"

 $[0,1]\times[8.7,34.5]\times[11,43]\times[1,1.2]$

• Disjunction (\lor **C**) is easy on FIAs

Using the trace of an interval-based CSP solver, following the approach of [Huang and Darwiche, 2005]:

Principle

The solver slices the domains until it finds a box either entirely contained in the model set, or of size lower than a given threshold. Our algorithm then creates new nodes, and merges them with the current FIA.

We applied this method with the RealPaver solver [Granvilliers and Benhamou, 2006].

・周 と ・ ヨ と ・ ヨ と ・ ヨ 日

Problem	IAs	Policy	FIAs	Construction	Results
Outline					

- 1 Introduction to the problem
- Interval Automata
- Exploitation of a policy
- 4 Focusing interval automata
- 5 Building FIAs

4 E 6 4 E 6

Problem	IAs	Policy	FIAs	Construction	Results
00000	000000	0000	000	00	0000
Problems					

obsmem : manages connections between the observation device and the mass memory of a satellite.

robot : a robot exploring an area.

ring : standard benchmark for planning with non-determinism.

drone : a drone must achieve different goals on a number of zones in limited time. (two versions : discrete and hybrid)

Problem	IAs	Policy	FIAs	Construction	Results
00000	000000	0000	000		0●00
Results					

problem	red. time (ms)	size (edges)	% input	% OBDD	CD(ms)	MX(ms)
obsmem2	1102	100	74	66	1	5
obsmem3	2168	197	75	69	4	11
obsmem4	4729	342	75	70	4	11
obsmem5	5657	546	76	70	7	19
obsmem6	9433	820	76	76	11	35
porobot	4035	56	97	36	0	1
forobot	52767	60	99	31	0	3
ring7	92	13	75	71	0	1
ring8	185	13	78	75	0	1
ring9	92	13	80	75	0	1
ring10	82	13	81	75	0	2
drone10	46732	453	95	47	11	23
drone20	947174	763	97	44	30	61
drone30	2850715	944	98	43	21	48
drone40	5721059	944	98	45	15	29
drone10	104373	16820	35	×	7143	110
drone20	418885	38076	35	×	16970	193
drone30	1850326	53917	36	×	23597	612

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Problem	IAs	Policy	FIAs	Construction	Results
00000	000000	0000	000	00	0000
Conclusior	1				

We decribed a compilation structure theoretically allowing to represent and exploit online decision policies involving both discrete and continuous variables.

Significant gain in size in comparison to OBDDs.

Operations duration is interesting, yet to be improved.

Future work: Improvement of algorithms, and comparison with other non-Boolean structures (finite-state automata [Vempaty, 1992]).

Problem	IAs	Policy	FIAs	Construction	Results
					0000
Perspectiv	res				

Depending on the results:

- Search for better building methods for FIAs (heuristics...)
- Integration of valuations in IAs, approximate compilation [Venturini and Provan, 2008]
- Other structures (*R**-*trees*...)

References

Granvilliers, L. and Benhamou, F. (2006).

Algorithm 852: RealPaver: an Interval Solver Using Constraint Satisfaction Techniques.

ACM Trans. Math. Softw., 32(1):138-156.

Huang, J. and Darwiche, A. (2005).

DPLL with a Trace: From SAT to Knowledge Compilation.

In International Joint Conference on Artificial Intelligence (IJCAI), pages 156–162.

Vempaty, N. R. (1992).

Solving Constraint Satisfaction Problems Using Finite State Automata. In Association for the Avancement of Artificial Intelligence Conference (AAAI), pages 453–458.

Venturini, A. and Provan, G. (2008).

Incremental Algorithms for Approximate Compilation.

In Association for the Avancement of Artificial Intelligence Conference (AAAI), pages 1495–1499.