
Knowledge Compilation Using Interval Automata
and Applications to Planning

Alexandre Niveau1 and Hélène Fargier2 and Cédric Pralet1 and Gérard Verfaillie1

Abstract. Knowledge compilation [7, 5, 17, 9] consists in
transforming a problem offline into a form which is tractable
online. In this paper, we introduce new structures, based on
the notion of interval automaton (IA), adapted to the com-
pilation of problems involving both discrete and continuous
variables, and especially of decision policies and transition ta-
bles, in the purpose of controlling autonomous systems.

Interval automata can be seen as a generalization of binary
decision diagrams (BDDs) insofar as they are rooted DAGs
with variable-labelled nodes, with the differences that interval
automata are non-deterministic structures whose edges are
labelled with closed intervals and whose nodes can have a
multiplicity greater than two.

This paper studies the complexity of the queries and trans-
formations classically considered when examining a new com-
pilation language. We show that a particular subset of interval
automata, the focusing ones (FIAs), have theoretical capabil-
ities very close to those of DNNFs; they notably support in
polytime the main operations needed to handle decision poli-
cies online. Experimental results are presented in order to
support these claims.

1 INTRODUCTION

Autonomous systems are required to make decisions auto-
matically, depending on the current observations and goals.
Performing the decision-making tasks completely online, with
the embedded computational capabilities only, can compro-
mise the reactivity of the system. On the other hand, the
limited size of embedded memory does not allow to record
the potentially huge set of different alternatives (all decisions
to be made in every possible situation).

A possible way of solving this contradiction is to use knowl-
edge compilation, which consists in transforming offline a
problem, thanks to some target compilation language, in such
a way that its online resolution becomes tractable. In our con-
text of autonomous system control, the offline transformation
can be, for example, to directly express the transition relation
of the problem in a target language, as well as to solve the
problem entirely, retrieve a decision policy, and then express
it in a target language. In all cases, the compiled form must
be both as compact as possible, so that embedded memory
constraints are respected, and as tractable as possible, so that

1 ONERA/DCSD, France, email: {alexandre.niveau, cpralet,
verfail}@onera.fr

2 IRIT/RPDMP, France, email: fargier@irit.fr

relevant operations (depending on what we need to do) can
be quickly processed online.

Efficient target compilation languages were proposed for
planning domains involving variables with Boolean or enu-
merated domains (e.g. OBDDs [4], finite-state automata [19],
DNNFs [8], etc.). However, in many cases, controlling an au-
tonomous system involves variables with continuous or large
enumerated domains, such as time or energy; it would be in-
teresting to represent them without having to discretize them.

All in all, the goal of this paper is to define new target
compilation languages, namely the interval automata family,
suited to this particular application; that is to say, they must
be applicable to mixed problems (involving both continuous
and discrete features) and support all operations needed. We
will focus on the representation and online exploitation of
decision policies and transition relations.

We first formally define interval automata in Section 2. We
then study several operations in Section 3. The way interval
automata can be built is presented in Section 4. Last, experi-
mental results are provided in Section 5. Proofs are gathered
in Appendix A.

2 INTERVAL AUTOMATA

2.1 Structure and Semantics

Definition 1 (Interval automaton). An interval automaton
(IA) is a couple φ = 〈X,Γ〉, with

• X (denoted Var(φ)) a finite and totally ordered set of real
variables, whose domains are representable by the union of
a finite number of closed intervals from R;

• Γ a directed acyclic graph with at most one root and at most
one leaf (the sink), whose non-leaf nodes are labelled by a
variable of X or by the disjunctive symbol Y (that we shall
treat as a peculiar variable), and whose edges are labelled
by a closed interval from R. Edges going out of Y-labelled
nodes can only be labelled by either R or ∅.

This definition allows an interval automaton3 to be empty
(no node at all) or to contain only one node (together root
and sink), and ensures that every edge belongs to at least one
path from the root to the sink. Figure 1 gives an example of
interval automaton.

For x ∈ X, Dom(x) ⊆ R denotes the domain of x,
which can either be enumerated (Dom(x) = {1, 3, 56, 4.87})
3 Note that our interval automata have no relationship with the

single-clock timed automata that go by the same name.

yx

[0, 10.6]

[24.4, 32]

[41, 59]

[−10, 10]

[8, 67.5]

[90, 92]

Figure 1. An example of interval automaton. Its model set (see
Definition 2), represented as a union of boxes, is

[−10, 10]× [0, 10.6] ∪ [−10, 10]× [24.4, 32] ∪ [−10, 10]× [41, 59] ∪
[8, 67.5]× [0, 10.6] ∪ [8, 67.5]× [24.4, 32] ∪ [8, 67.5]× [41, 59] ∪

[90, 92]× [0, 10.6] ∪ [90, 92]× [24.4, 32] ∪ [90, 92]× [41, 59].

or continuous (Dom(x) = [1, 7] ∪ [23.4, 28]). By convention,
Dom(Y) = R. We call “box” a cartesian product of intervals.
For Y = {y1, . . . , yk} ⊆ X, such that the yi are sorted in as-
cending order, Dom(Y) denotes Dom(y1) × · · · × Dom(yk),
and ~y denotes a Y -assignment of variables from Y , i.e.
~y ∈ Dom(Y). When Y ∩X = ∅, ~x . ~y is the concatenation of
~x and ~y. Last, ~y(yi) denotes the value assigned to yi in ~y.

Let φ = 〈X,Γ〉 be an interval automaton, N a node and E
an edge in Γ. We can then define the following elements:

• Root(φ) the root of Γ and Sink(φ) its sink;
• |φ| the size of φ, i.e. the number of edges of Γ plus the

number of intervals needed to represent the domains of the
variables;

• Outφ(N) (resp. Inφ(N)) the set of outgoing (resp. incom-
ing) edges of N ;

• Varφ(N) the variable labelling N (by convention
Varφ(Sink(φ)) = Y);

• Srcφ(E) the node from which E comes and Dest(E) the
node to which E points;

• Itvφ(E) the interval labelling E;
• Varφ(E) = Varφ(Src(E)) the variable associated with E.

When there is no ambiguity, we forget to use the φ subscript.
An IA can be seen as a compact representation of a Boolean

function over discrete or continuous variables. This function
is the interpretation function of the interval automaton:

Definition 2 (Semantics of an interval automaton). An in-
terval automaton φ on X (i.e. we denote X = Var(φ)) rep-
resents a function from Dom(X) to {>,⊥}. This function,
called its interpretation function I(φ), is defined as follows:
for every X-assignment ~x, I(φ)(~x) = > if and only if there
exists a path p from the root to the sink of φ such that for
each edge E along p, either Var(E) = Y and Itv(E) 6= ∅, or
~x(Var(E)) ∈ Itv(E).

We say that ~x is a model of φ whenever I(φ)(~x) = >.
Mod(φ) denotes the set of models of φ.
φ is said to be equivalent to another IA ψ (denoted φ ≡ ψ)

iff Mod(φ) = Mod(ψ).

Note that the interpretation function of the empty automa-
ton always returns ⊥, since an empty IA contains no path
from the root to the sink. Conversely, the interpretation func-
tion of the one-node automaton always returns >, since in the
one-node IA, the only path from the root to the sink contains
no edge. We can now introduce useful definitions:

Definition 3 (Consistency, validity, context). Let φ be an
interval automaton on X.
φ is said to be consistent (resp. valid) if and only if

Mod(φ) 6= ∅ (resp. Mod(φ) = Dom(X)).

A value ω ∈ R is said to be consistent for a variable y ∈ X
in φ if and only if there exists an X-assignment ~x in Mod(φ)
such that ~x(y) = ω.

The set of all consistent values for y in φ is called the con-
text of y in φ and denoted Ctxtφ(y).

We will see in the following that deciding whether an IA
is consistent is not tractable. One of the reasons is that the
intervals along a path do not have a nested structure: on a
given path, the intervals related to the same variable can en-
large after having shrunk, and conversely. They can even be
conflicting, hence the intractability of the consistency request.
We will therefore consider focusing IAs, i.e. IAs in which in-
tervals can only shrink from the root to the sink.

Definition 4 (Focusing interval automata). A focusing edge
in an interval automaton φ is an edge E such that all edges
E′ on a path from the root of φ to Src(E) such that Var(E) =
Var(E′) verify Itv(E) ⊆ Itv(E′).

A focusing interval automaton (FIA) is an IA containing
only focusing edges.

An example of FIA can be found on Fig. 2.

y

z

y

x

z

z

x

[40, 60]

[6, 7]

[0, 4]

[36, 62]

[51, 54]

[42, 49.5]

[−20, 6]

[6, 10]

[3, 7]

[−50, 54]

[42, 210]

Figure 2. An example of focusing interval automaton. Variable
domains are as follows: Dom(x) = [0, 100], Dom(y) = [0, 100] and

Dom(z) = {0, 3, 7, 10}.

As suggested by Fig. 1, the size of the automaton can be
exponentially lower than the size of its extended model set
(described as an union of boxes). This is notably due to the
fact that IAs can be reduced by suppressing redundancies, in
the manner of BDDs and NNFs. Before detailing this reduc-
tion operation, let us enlighten the relationships between IAs
and these kinds of structures.

2.2 Relationships with BDDs and other
target languages

Introduced by Bryant in [4], Binary Decision Diagrams
(BDDs) are rooted directed acyclic graphs that represent
Boolean functions of Boolean variables. They have exactly two
leaves, respectively labelled > and ⊥; their non-leaf nodes are
labelled by a Boolean variable and have exactly two outgoing
edges, also respectively labelled > and ⊥ (or equivalently 1
and 0). A free BDD (FBDD) is a BDD that satisfies the read-
once property (each path contains at most one occurrence
of each variable). Whenever a same order is imposed on the
variables along every path, we get an ordered BDD (OBDD).

Interval automata can be understood as a generalization of
BDDs. The interpretation function of BDDs is indeed similar
to the one of IAs: for a given assignment of the variables, the
function’s value is > if and only if there exists a path from
the root to the >-labelled leaf such that the given assignment
is coherent with each edge along the path.

We see that, when interpreting a BDD, it is possible to
ignore the ⊥-labelled leaf. Now, if we remove this leaf, a BDD
is an IA the intervals of which are [0, 0] or [1, 1]:

Proposition 5 (Correspondence between IAs and BDDs).
Any BDD can be expressed in the form of an equivalent IA,
in time linear in the BDD’s size.

This linear translatability will help prove further proposi-
tions. It can also be used to translate any FBDD or OBDD
in the FIA framework:

Proposition 6 (Correspondence between FIAs and FBDDs).
Any FBDD (and thus any OBDD) can be expressed in the
form of an equivalent FIA, in time linear in the FBDD’s size.

The main difference between the IA family and the BDD
family (including ADDs) is that IAs are not required to be
deterministic (the same solution can be checked over sev-
eral paths of the automaton, which potentially allows gain
in space), and obviously that IAs are not limited to Boolean
variables. Vempaty’s automata [19, 1], SLDDs [22] and signed
logic [2] also support non Boolean domains, but are restricted
to finite domains. Vempaty’s automata are moreover ordered
structures, just like OBDDs or interval diagrams [18].

To compile Boolean functions over continuous variables, one
could use the spatial access method “R*-tree” [3], which is a
tree (not a graph) whose nodes are labelled by boxes. How-
ever, since it has not been introduced as a target compilation
language, the feasibility of useful operations (conditioning,
forgetting. . .) have not been studied yet.

Interestingly, FIA are not decomposable structures in the
sense of DNNFs [8], but keep the essence of the decompos-
ability property: they are linkless [14] — in a FIA, a variable
restriction can be repeated on a path (in terms of NNFs, on
the two sides of an AND node), but the restrictions cannot
conflict (with the noticeable exception of ∅-marked edges, that
are typically removed when reducing the automaton).

2.3 Reduction

Like a BDD, an interval automaton can be reduced in size
without changing its semantics by merging some nodes or
edges. The reduction operations introduced thereafter are
based on the notions of isomorphic, stammering and unde-
cisive nodes, and of contiguous and unreachable edges. Some
of these notions are straightforward generalizations of defini-
tions introduced in the context of BDDs [4], while others are
specific to interval automata.

Definition 7 (Isomorphic nodes). Two non-leaf nodes N1,
N2 of an IA φ are isomorphic if and only if

• Var(N1) = Var(N2);
• there exists a bijection σ from Out(N1) onto Out(N2), such

that ∀E ∈ Out(N1), Itv(E) = Itv(σ(E)) and Dest(E) =
Dest(σ(E)).

Isomorphic nodes are redundant, as they represent the same
function; only one of them is necessary (see Figure 3).

y

y

x

[65, 82]

[6, 53]

[4.3, 6.8]

[0, 1]

[4.3, 6.8]

[0, 1]

⇓

yx
[6, 53]

[65, 82] [4.3, 6.8]

[0, 1]

Figure 3. Merging of isomorphic nodes.

Definition 8 (Stammering node). A non-root node N of an
IA φ is stammering if and only if all parent nodes of N are
labelled by Var(N), and either |Out(N)| = 1 or | In(N)| = 1.

Stammering nodes are useless, since the information they
bring could harmlessly be deported to their parents (see Fig-
ure 4).

x x
[0, 10]

[−4, 3]

[5, 15]

⇓

x
[5, 10]

[0, 3]

Figure 4. Merging of stammering nodes.

Definition 9 (Undecisive node). A node N of an IA φ is
undecisive if and only if |Out(N)| = 1 and E ∈ Out(N) is
such that Dom(Var(E)) ⊆ Itv(E).

An undecisive node does not restrict the solutions corre-
sponding to the paths it is in; it is “automatically” crossed
(see Figure 5).

x
|R ⇒

Figure 5. Elimination of undecisive nodes.

Definition 10 (Contiguous edges). Two edges E1, E2 of an
IA φ are contiguous if and only if

• Src(E1) = Src(E2);
• Dest(E1) = Dest(E2);
• there exists an interval I ⊆ R such that I∩Dom(Var(E1)) =

(Itv(E1) ∪ Itv(E2)) ∩Dom(Var(E1)).

Contiguous edges both come from the same node, both
point to the same node and are not disjoint (modulo the do-
main of their variable): they could be replaced by a single edge
(see Figure 6). For example, in the case of an integer-valued
variable, a couple of edges labelled [0, 3] and [4, 8] respectively
is equivalent to a single edge labelled [0, 8].

x
[−159, 0]

[0, 74]
⇒ x

[−159, 74]

Figure 6. Merging of contiguous edges.

Definition 11 (Unreachable edge). An edge E of an IA φ is
unreachable if and only if Itv(E) ∩Dom(Var(E)) = ∅.

An unreachable edge will never be crossed, as no value in
its label is coherent with the variable domain (see Figure 7).

x
[−10, −2.5] ⇒ ∅

Figure 7. Elimination of unreachable edges (here
Dom(x) = R+).

Definition 12 (Reduced interval automaton). An interval
automaton φ is said to be reduced if and only if

• no node of φ is isomorphic to another, stammering, or un-
decisive;

• no edge of φ is contiguous to another or unreachable.

In the following, we can consider only reduced IAs since
reduction can be done in time polynomial in the size of the
structure.

Proposition 13 (Reduction of an IA). There exists a poly-
time algorithm that transforms any IA φ into an equivalent
reduced IA φ′ such that |φ′| ≤ |φ|.

The first result we get on FIAs is that they are not harder
to reduce than IAs: our reduction algorithm maintains the
focusing property when applied on a FIA.

Proposition 14 (Reduction of a FIA). There exists a poly-
time algorithm that transforms any FIA φ into an equivalent
reduced FIA φ′ such that |φ′| ≤ |φ|.

3 REQUESTS ON INTERVAL
AUTOMATA

As previously said, an interval automaton represents a func-
tion from some set of variables to {⊥,>}. This section formal-
izes the main queries and transformations that could be useful
in a planning context. For the sake of exhaustivity, we also in-
troduce requests that are classically studied when evaluating
the facilities of a compilation language [8].

3.1 Useful Operations for Planning

Compilation of decision policies In a planning context,
we first want to represent by an interval automaton a decision
policy δ produced by some planning algorithm. In this case,
δ is a function which holds on two sets of variables, the set S
of state variables and the set D of decision variables. For any
S-assignment ~s and any D-assignment ~d, δ(~s . ~d) = > if and

only if ~d is a suitable decision in state ~s.
In order to exploit a decision policy δ online, two basic oper-

ations are required. First, each time a new state instantiation
~s is observed, we need to determine the set of decisions suiting
~s according to δ. This operation corresponds to conditioning δ
by ~s. One of the suitable decisions must then be extracted, to
be executed. This operation corresponds to model extraction.
Both operations will be defined formally in the sequel.

Concerning the elaboration of a decision policy, consider
that it is built incrementally by some planning algorithm,
until it covers the whole set of reachable states. In this case,
incrementally building δ means adding in δ new pairs (~s, ~d)

such that decision ~d covers state ~s. To do so, if δ is represented

at each step by an interval automaton, we need to perform
operations of the form δ := δ ∨ (~s . ~d), that is disjunctions.

It is worth noticing that in the final policy, all the possible
decisions for a given state are of equal interest (relative plau-
sibilities are not expressed in IA), even if the original problem
is stochastic. This does not prevent to build such a policy from
a stochastic problem. Once a decision policy has been built,
be the initial problem stochastic or not, fully observable or
not, it can be compiled into an IA.

Compilation of transition relations IAs can also be
used to represent the basic data involved in a planning do-
main: the set of possible initial states, of goal states, and the
transition relation defining the possible transitions of a given
system. Let us consider the example of a non-stochastic4 tran-
sition relation T . Such a relation holds on three sets of vari-
ables: the set S of variables representing the current state, the
set D of variables representing a decision made, and the set
S′ of variables representing the state after the decision is ap-
plied. For any S∪D∪S′-assignment ~s . ~d . ~s′, δ(~s . ~d . ~s′) = >
means that ~s′ is a possible successor state when decision ~d is
applied in state ~s.

Several operations may be needed to efficiently manipu-
late transition relations compiled as IAs. Notably, in forward
approaches of planning, it may be useful to efficiently com-
pute, for a current state ~s and a decision ~d, the set S′ of
possible successors of ~s, that is S′-instantiations ~s′ such that
T (~s, ~d, ~s′) = >. This requires the operations of conditioning,

to assign ~s and ~d in T , and of model enumeration, to get all
possible successors ~s′. When actions have a deterministic ef-
fect, the transition relation T becomes a transition function
and model extraction suffices to get the only possible succes-
sor state ~s′. Manipulation of deterministic transition functions
cover practical deterministic planning problems, in which the
objective is to build offline a controller able to face any possi-
ble initial situation (an alternative to the planning/replanning
approach).

All operations interesting in a planning context, as well as
other standard requests, are formally defined in the following.

3.2 Operations on Interval Automata

Let us detail the operations5 we will focus on, and check
whether they can be performed efficiently on the compiled
form. We first introduce the queries, that is, the operations
which return information about an IA.

Definition 15 (Queries). Let L denote a subset of the IA

language.

• L satisfies6 CO (resp. VA) iff there exists a polytime al-
gorithm that maps every automaton φ from L to 1 if φ is

4 IAs do not express plausibilities. Yet, using IAs for compiling
stochastic transition relations (and policies) is a natural exten-
sion of our work. This extension can be achieved by adding prob-
abilities on the edges, thus making valued IAs, closer to SLDDs.

5 CO stands for “COnsistency”, VA for “VAlidity”, EQ for
“EQuivalence”, MC for “Model Checking”, MX for “Model eX-
traction”, ME for “Model Enumeration”, CX for “Context Ex-
traction”, CD for “ConDitioning”, FO for “FOrgetting”, EN for
“ENsuring”, SCD, SFO, SEN for “Single CD, FO, EN”, ∧C,
∨C for “∧, ∨-Closure”, ∧BC, ∨BC for “∧, ∨-Binary Closure”,
and ∧tC for “Closure under conjunction with a term”.

6 One can also use “supports”.

consistent (resp. valid), and to 0 otherwise.
• L satisfies EQ iff there exists a polytime algorithm that

maps every pair of automata (φ, φ′) from L to 1 if φ ≡ φ′

and to 0 otherwise.
• L satisfies MC iff there exists a polytime algorithm

that maps every automaton φ from L and any Var(φ)-
assignment ~x to 1 if ~x is a model of φ and to 0 otherwise.

• L satisfies MX iff there exists a polytime algorithm that
maps every automaton φ in L to one model of φ if there is
one, and stops without returning anything otherwise.

• L satisfies ME iff there exists a polynomial p(;) and an
algorithm that outputs, for any automaton φ from L, a set
B of non-empty boxes whose union is equal to Mod(φ) in
time p(|φ|; |B|).

• L satisfies CX iff there exists a polytime algorithm that out-
puts, for any φ in L and any y ∈ Var(φ), Ctxtφ(y).

We will now define a number of transformations on IAs,
(i.e. operations that return a modified IA); we first present
the semantic operations on which they are based.

Definition 16. Let I, J be the interpretation functions on
Var(I),Var(J) of some automata.

• The conjunction (resp. disjunction) of I and J is the func-
tion I∧ J (resp. I∨ J) on the variables in X = Var(I) ∪
Var(J) defined by (I∧ J)(~x) = I(~x)∧J(~x) (resp. (I∨ J)(~x) =
I(~x) ∨ J(~x)).

• The existential projection of I on Y ⊆ Var(I) is the func-
tion I↓Y on the variables of Y defined by: I↓Y (~y) = > iff
there exist a Z-assignment ~z (with Z = Var(I) \ Y) s.t.
I(~z . ~y) = >. The “forgetting” operation is the dual one:
forget(I, Y) = I↓Var(I)\Y .

• The universal projection of I on Y ⊆ Var(I) is the function
I⇓Y on the variables of Y defined by: I⇓Y (~y) = > iff for
any Z-assignment ~z (with Z = Var(I) \ Y), I(~z . ~y) = >.
The “ensuring” operation is the dual one: ensure(I, Y) =
I⇓Var(I)\Y .

• Given an assignment ~y of some set of variables Y ⊆ Var(I),
the conditioning of I by ~y is the function I|~y on the variables
in Z = Var(I) \ Y defined by: I|~y(~z) = I(~y . ~z).

And now for the knowledge compilation-oriented transfor-
mations:

Definition 17 (Transformations). Let L denote a subset of
the IA language.

• L satisfies CD iff there exists a polytime algorithm that
maps every automaton φ in L and every assigment ~y of
Y ⊆ Var(φ) to an automaton φ′ in L such that I(φ′) =
I(φ)|~y.

• L satisfies FO (resp. EN) iff there exists a polytime al-
gorithm that maps every automaton φ from L and every
Y ⊆ Var(φ) to an automaton φ′ in L such that I(φ′) =
forget(I(φ), Y) (resp. I(φ′) = ensure(I(φ), Y)).

• L satisfies SCD (resp. SFO, resp. SEN) iff it satisfies CD

(resp. FO, resp. EN) when limited to a single variable (i.e.
Card(Y) = 1).

• L satisfies ∧C (resp. ∨C) iff there exists a polytime al-
gorithm that maps every finite set of automata Φ =
{φ1, . . . , φk} from L to an automaton φ in L such that
I(φ) = I(φ1) ∧ · · · ∧ I(φk) (resp. I(φ) = I(φ1) ∨ · · · ∨ I(φk)).

• L satisfies ∧BC (resp. ∨BC) iff it satisfies ∧C (resp. ∨C)
when limited to a pair of automata (i.e. Card(Φ) = 2)

• L satisfies ∧tC iff there exists a polytime algorithm that
maps every automaton φ from L, any set of variables
{y1, . . . , yk} ⊆ Var(φ) and any sequence (A1, . . . , Ak) of
closed intervals, to an automaton φ′ in L such that I(φ′) =
I(φ)∧fy1,A1∧· · ·∧fyk,Ak , where fx,A is the function defined
on Y = {x} by fx,A(~y) = > ⇔ ~y(x) ∈ A.

3.3 Complexity Results

L C
O

V
A

E
Q

M
C

M
X

C
X

M
E

C
D

S
C
D

∧
tC

F
O

S
F
O

E
N

S
E
N

∧
C

∧
B
C

∨
C

∨
B
C

IA ◦ ◦ ◦
√
◦ ◦ ◦

√ √ √
◦
√
◦
√ √ √ √ √

FIA
√
◦ ◦

√ √ √ √ √ √ √ √ √
◦ ◦ ◦ ◦

√ √

Table 1. Results about queries and transformations.
√

means
“satisfies”, ◦ means “does not support, unless P = NP”.

Proposition 18. The results of Table 1 hold.

It appears that performance of interval automata is weak
with respect to most of the queries, and in particular with re-
spect to CO, MX and VA, which is not surprising since BDDs
are IAs. Imposing the restrictive focusing property makes
most of the queries tractable, including CO and MX. The
main reason is that every path from the root to the sink of a
reduced FIA is coherent, since no edge along it conflicts with
any other (similarly to FBDDs).

This is also why (added to the fact that we allow Y-nodes)
FIAs support CD and FO : it is roughly sufficient to replace
all concerned nodes by Y-nodes and their edges’ labels by R
or ∅.

Proposition 18 shows that FIAs are suitable for compilation
of decision policies, as well as transition relations to be used
in a forward approach.

It also proves that neither IAs’ nor FIAs’ reduced form is
canonical (if it were, EQ would be polytime), and that IAs
are of course not polynomially translatable into FIAs (FIA
supports operations not supported by IA).

4 BUILDING INTERVAL AUTOMATA

We have shown that FIA allows in polytime operations that
are useful for planning. Let us briefly cite two possible algo-
rithmic approaches for their construction.

Union of Boxes It is straightforward to convert a union
of boxes into a FIA. This can be done in polytime, thanks
to ∨C. We can then easily compile into FIA any policy or
transition table that is given in this form: either a discrete
one, obtained for example by an algorithm returning DNFs,
or a continuous one, obtained for example by an interval-based
constraint solver.

Trace of RealPaver We can also adopt a process similar
to [11], using the trace of a search algorithm as a convenient
way to transform a CSP into an FIA [15]. This process con-
sists in creating new nodes and edges as soon as a solution is
found by the search algorithm, and in fusioning them with the
current FIA recording the solutions found so far. Here, we will

use this method on the interval-based solver RealPaver [10] to
create an interval automaton representing an approximation
of the solution set of a constraint network.

5 RESULTS

problem
red time size % edges/ % edges/ CD MX

(ms) (edges) input OBDD (ms) (ms)

obsmem2 1102 100 74 66 1 5
obsmem3 2168 197 75 69 4 11
obsmem4 4729 342 75 70 4 11
obsmem5 5657 546 76 70 7 19
obsmem6 9433 820 76 76 11 35
porobot 4035 56 97 36 0 1
forobot 52767 60 99 31 0 3
ring7 92 13 75 71 0 1
ring8 185 13 78 75 0 1
ring9 92 13 80 75 0 1
ring10 82 13 81 75 0 2

drone10 46732 453 95 47 11 23
drone20 947174 763 97 44 30 61
drone30 2850715 944 98 43 21 48
drone40 5721059 944 98 45 15 29

drone10 104373 16820 35 × 7143 110
drone20 418885 38076 35 × 16970 193
drone30 1850326 53917 36 × 23597 612

Table 2. Application results.

Table 2 presents a few results of our first implementation
for a number of discrete and continuous problems, consist-
ing in policies or transition tables. The obsmem problem man-
ages connections between the observation device and the mass
memory of a satellite. The robot problem deals with a robot
exploring an area, and the ring domain is a standard bench-
mark for planning with non-determinism. In the drone prob-
lem, a drone must achieve different goals on a number of zones
in limited time; this latter problem is used in a discrete and
a hybrid version, in which the continuous variable is the re-
maining time. See Appendix B for more details.

In Table 2, the last three instances are transition tables
involving a continuous variable (thus not comparable with
OBDDs), obtained by following the trace of RealPaver. All
the others are discrete decision policies, obtained by compil-
ing disjunctions of boxes given by the algorithm described in
[16]. For each instance, we state the time needed for reducing
the compiled FIA, the size of the reduced FIA, the reduction
rate (0% meaning no reduction) w.r.t. the input (number of
boxes × number of variables), the reduction rate w.r.t. the
equivalent OBDD (obtained by converting enumerated vari-
ables into Boolean by log encoding [21]), and the mean time
taken by a single conditioning or model extraction operation
on a standard laptop7.

Those results show that FIAs can be favourably compared
to OBDDs concerning the size of the graph, and that our
implementation of the requests is worth being improved.

6 CONCLUSION

In this paper, we introduced interval automata, a new knowl-
edge compilation language dealing with Boolean functions
holding on enumerated or continuous variables. We identified

7 Mobile Turion 64 X2 TL-56, 1.80 GHz, 2 Go RAM.

a subclass of interval automata, the focusing ones, for which
several requests useful in a planning context were proven to be
tractable. We showed the significant gains obtained regarding
the size of the compiled structure compared to OBDDs, IAs
being moreover able to model continuous domains without re-
quiring discretization. In the future, we plan to compare FIAs
to other enumerated domains target languages (Vempaty’s
automata, SLDDs. . .), to study other interesting fragments
of IAs, to extend the IA language with valuations (thus al-
lowing to represent stochastic policies, and to use approximate
compilation [20]), and to define other compilation languages
suited to the management of planning domains.

REFERENCES

[1] J. Amilhastre, P., and M.-C. Vilarem, ‘Fa Minimisation
Heuristics for a Class of Finite Languages’, in WIA, pp. 1–12,
(1999).

[2] Bernhard Beckert, Reiner Hähnle, and Felip Manyà, ‘Trans-
formations between Signed and Classical Clause Logic’, in
ISMVL, pp. 248–255, (1999).

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and
Bernhard Seeger, ‘The R*-tree: An Efficient and Robust Ac-
cess Method for Points and Rectangles’, in SIGMOD Confer-
ence, pp. 322–331, (1990).

[4] R.E. Bryant, ‘Graph-Based Algorithms for Boolean Func-
tion Manipulation’, IEEE Transactions on Computers, 35(8),
677–691, (1986).

[5] M. Cadoli and F.M. Donini, ‘A Survey on Knowledge Com-
pilation’, AI Communications, 10(3–4), 137–150, (1998).

[6] Alessandro Cimatti and Marco Roveri, ‘Conformant Planning
via Symbolic Model Checking’, JAIR, 13, 305–338, (2000).

[7] A. Darwiche, ‘Decomposable Negation Normal Form’, Jour-
nal of the ACM, 48(4), 608–647, (2001).

[8] A. Darwiche and P. Marquis, ‘A Knowledge Compilation
Map’, JAIR, 17, 229–264, (2002).

[9] A. del Val, ‘Tractable Databases: How to Make Propositional
Unit Resolution Complete Through Compilation’, in Proc. of
KR’94, pp. 551–561, (1994).

[10] L. Granvilliers and F. Benhamou, ‘Algorithm 852: RealPaver:
an Interval Solver Using Constraint Satisfaction Techniques’,
ACM Trans. Math. Softw., 32(1), 138–156, (2006).

[11] J. Huang and A. Darwiche, ‘DPLL with a Trace: From SAT
to Knowledge Compilation’, in IJCAI, pp. 156–162, (2005).

[12] Michel Lemâıtre, Cédric Pralet, and Gérard Verfaillie, ‘Pro-
gramme commun Onera/CNES AGATA Autonomie des
Systèmes Spatiaux — Tâche 2.1 Synthèse de contrôleur’,
Technical report, Onera/CNES, (2009).

[13] Christoph Meinel and Thorsten Theobald, Algorithms and
Data Structures in VLSI Design: OBDD — Foundations and
Applications, Springer, 1998.

[14] N. V. Murray and E. Rosenthal, ‘Tableaux, Path Dissolu-
tion, and Decomposable Negation Normal Form for Knowl-
edge Compilation’, in TABLEAUX, pp. 165–180, (2003).

[15] Alexandre Niveau, Hélène Fargier, Cédric Pralet, and Gérard
Verfaillie, ‘Handling the Output of Interval-Based Constraint
Solvers by Interval Automata Compilation’, in IntCP Work-
shop on Interval Analysis and Constraint Propagation for
Applications, CP, (2009).

[16] Cédric Pralet, Gérard Verfaillie, Michel Lemâıtre, and Guil-
laume Infantes, ‘Constraint-based Controller Synthesis in
Non-Deterministic and Partially Observable Domains’, in
ECAI, (2010).

[17] B. Selman and H.A. Kautz, ‘Knowledge Compilation and
Theory Approximation’, Journal of the ACM, 43, 193–224,
(1996).

[18] K. Strehl and L. Thiele, ‘Symbolic Model Checking of Process
Networks Using Interval Diagram Techniques’, in Proc. of
the 1998 IEEE/ACM international conference on Computer-
aided design, pp. 686–692, (1998).

[19] N. R. Vempaty, ‘Solving Constraint Satisfaction Problems Us-
ing Finite State Automata’, in AAAI, pp. 453–458, (1992).

[20] Alberto Venturini and Gregory Provan, ‘Incremental Algo-
rithms for Approximate Compilation’, in AAAI, pp. 1495–
1499, (2008).

[21] Toby Walsh, ‘SAT v CSP’, in CP, pp. 441–456, (2000).
[22] Nic Wilson, ‘Decision Diagrams for the Computation of

Semiring Valuations’, in IJCAI, pp. 331–336, (2005).

A PROOFS

In all of these proofs, we consider for short that for an inter-
pretation function I with Y = Var(I), a set of variables Z s.t.
Z ∩ Y = ∅, ~y a Y -assignment and ~z a Z-assignment, I(~y . ~z)
is simply defined as I(~y).

Let φ be an IA on X and ~x an X-assignment. A path p
from the root to the sink of φ is said to be compatible with ~x
if and only if for each edge E along p, either Var(E) = Y and
Itv(E) 6= ∅, or ~x(Var(E)) ∈ Itv(E).

For any I, we denote ~x |= I the fact that ~x is a model of I,
and ~x |= φ iff ~x |= I(φ). We also denote ~x |= p if p is a path
compatible with ~x.

Proof of Proposition 5. As Boolean variables can be repre-
sented by real variables with domain {0, 1}, a BDD can be
transformed into an IA by removing its ⊥-labeled node, and
by recursively removing all edges pointing to no node, and all
non-leaf nodes without outgoing edges. The graph obtained
then becomes an IA if each >-labeled edge is replaced by a
[1, 1]-labeled edge, and each ⊥-labeled edge is replaced by a
[0, 0]-labeled edge.

Proof of Proposition 6. If we use the procedure described in
the proof of Prop. 5 on an FBDD, the resulting IA is focusing.
Indeed, as each variable can only be encountered once on each
path, there is no risk that an interval conflicts with another.

Lemma 19 (Sizes of BDDs and IAs). For any BDD (resp.
any FBDD) φ, and ψ its corresponding IA (resp. FIA), |ψ|IA
is linear in |φ|BDD.

Proof. This is straightforward: as the size of a BDD is only
its number of edges, its number of variables is bounded by
its number of nodes, and the number of intervals necessary to
represent a Boolean is 2, we have |ψ|IA ≤ 2|̇φ|BDD.

Proof of Proposition 13. Let us apply Algorithm 1 on an IA
φ.

For a given node N :

• the operation of l. 4 suppresses N if it is stammering
• the operation of l. 10 ensures that N has no more unreach-

able outgoing edges
• the operation of l. 15, ensures that N has no more contigu-

ous outgoing edges
• the operation of l. 18 suppresses N if it is undecisive
• the operation of l. 24 suppresses all nodes that are isomor-

phic to N

and the algorithm stops when no operation has to be applied,
so obviously the resulting IA is reduced. Moreover, it is easy
to verify that each operation leaves the semantics of φ un-
changed. Finally, every operation removes stricly more edges

Algorithm 1 Reduction algorithm. At any time during pro-
cess, if an edge has no source or destination, it is suppressed;
so are non-leaf nodes without outgoing edges and non-root
nodes without incoming edges.

1: repeat
2: number the nodes of φ in such a way that if Ni ∈

Ch(Nj) then i < j
3: for i from 1 to the number of nodes in Γ(φ) do
4: if Ni is stammering then
5: for all (Ein, Eout) ∈ In(Ni)×Out(Ni) do
6: add an edge from Src(Ein) to Dest(Eout) labelled

by Itv(Ein) ∩ Itv(Eout)
7: suppress Ni
8: else
9: for all E ∈ Out(Ni) do

10: if E is unreachable then
11: suppress E
12: else
13: mark E
14: for all E′ ∈ Out(N) such that E′ is not

marked do
15: if E and E′ are contiguous then
16: label E with Itv(E) ∪ Itv(E′)
17: suppress E′

18: if Ni is undecisive then
19: for all Ein ∈ In(Ni) do
20: redirect Ein to the child of Ni
21: suppress Ni
22: else
23: for j from 1 to the number of nodes in Γ(φ) do
24: if Ni and Nj are isomorphic then
25: for all Ein ∈ In(Ni) do
26: redirect Ein to Nj
27: suppress Ni
28: until φ has not changed during process

or nodes than it creates8; this proves that (i) the algorithm
eventually stops (once the IA is empty, it does not change
anymore), and (ii) the size of the resulting IA is lower than
|φ| (the only case where the size does not change is when the
input IA is already reduced).

The computation for each node is obviously polynomial9

and the traversal loop (l. 3) treats each node once; as a result,
what is inside of the repeating loop (from l. 2 to l. 27) is
processed in polytime.

As the reducibility properties are not mutually indepen-
dant, the traversal must be repeated while it has modified
something in φ (l. 28). This does not change the polynomi-
ality: since a traversal lowers the size of φ (except of course
for the last one), the traversal loop will not be repeated more
than |φ| times.

Note that there obviously exists more efficient methods to
reduce an IA, but the only point here is to show that this
operation is polytime.

Definition 20 (IA focusing w.r.t. a variable). An IA φ is
said to be focusing w.r.t. y, with y ∈ Var(φ) iff every edge E
in φ s.t. Var(E) = y is focusing.

Lemma 21. Algorithm 1 maintains the property of focusing
w.r.t. a given variable.

Proof. Let φ be an IA that is focusing w.r.t. y ∈ Var(φ).
Let us suppose that we are at step i in the algorithm, with
Var(Ni) = y.

• “stammering” operation: let E ∈ Out(Ni) and E′ be
an edge on a path from Dest(E) to the sink such that
Var(E′) = y. E′ is focusing, so Itv(E′) ⊆ Itv(E). Thus
Itv(E′) ⊆ Itv(E)∩ Itv(Ein) for any Ein ∈ In(Ni). Hence E′

is still focusing after the “stammering” operation.
• “unreachable” operation: suppressing edges does not have

any influence on the focusingness of other edges in the
graph.

• “contiguous” operation: the two contiguous edges points to
the same node, so every descendant edge E associated with
y is such that Itv(E) is included in the labelling interval of
either one of the contiguous edge; hence it is included in
their union.

• “undecisive” operation: every descendant edge of the child
of Ni is also a descendant edge of Ni, so this operation does
not compromise their focusingness.

• since every outgoing edge of every node isomorphic to Ni is
focusing, redirecting all the parent edges to Ni is harmless.

Lemma 22 (IAs focusing w.r.t. all their variables). A re-
duced IA φ that is focusing w.r.t. every variable in Var(φ) is
focusing.

8 The only operation that creates anything is the stammering one,
and recall that either In(Ni) or Out(Ni) contains only one ele-
ment.

9 The only difficulty is about checking whether two disjoint edges
are contiguous. This can simply be done by verifying whether
(I1 ∪ I2)∩Dom(x) = Imin ∩Dom(x), where Imin is the narrowest
interval covering (I1 ∪ I2) ∩ Dom(x). We can show that if the
property is not true for Imin, it cannot be true for any I.

Proof. Let E be an edge in φ. Either Var(E) = y 6= Y, in
which case E is focusing, as φ is focusing w.r.t. y; or Var(E) =
Y, in which case E is also focusing, as every edge E′ in φ such
that Var(E′) = Y is labelled by R (since φ is reduced). Hence
φ is focusing.

Proof of Proposition 14. Let φ be a FIA. φ is a fortiori fo-
cusing w.r.t. all of its variables. Lemma 21 states that the IA
φ′ obtained by applying the reduction algorithm defined in
the proof of Prop. 13 is also focusing w.r.t. all of its variables.
Since φ′ is reduced, we use Lemma 22 to infer that φ′ is fo-
cusing. Thus our reduction algorithm maintains the focusing
property, hence the result.

Definition 23 (Mesh of a variable in an IA). Let φ be an
IA and x ∈ Var(φ). A mesh of x in φ is a partition M =
{M1, . . . ,Mn} of R such that for any edge E in φ verifying
Var(E) = x, for all 1 ≤ i ≤ n, (Mi ∩ Itv(E) 6= ∅) ⇒ (Mi ⊆
Itv(E)).

Lemma 24 (Obtaining a mesh). We can build in quasi-linear
time a mesh M = {M1, . . . ,Mn} of a variable in any IA,
which moreover verifies

∀Mi ∈M, (Mi ∩Dom(x) 6= ∅ ⇒Mi ⊆ Dom(x)) .

Proof. Let φ be an IA and x ∈ Var(φ). We only have to
recover the (finite, lower and upper) bounds of all intervals
associated to x, that is to say the disjoint intervals constitut-
ing Dom(x) and those labelling x-edges; this process is linear
(simple traversal of the graph). Let B = {b1, . . . , bk} be the
obtained set of bounds, sorted in ascending order (quasi-linear
process). Then

M =

{
]−∞, b1[, {b1},]b1, b2[, {b2}, . . . ,

]bi−1, bi[, {bi},]bi, bi+1[, . . . , {bk},]bk,+∞[

}
is a mesh of x in φ. Indeed:

• M is obviously a partition of R (all sets are disjoint and
their union is R) ;

• let E be an edge in φ s.t. Var(E) = x, and i an integer
s.t. Mi ∩ Itv(E) 6= ∅. By construction of M, Mi is either a
singleton, or an interval opened on both sides. In the first
case, it is straightforward that Mi ⊆ Itv(E). In the scond
case, it is impossible for Mi to contain any bound of Itv(E),
by construction; thus Mi ⊆ Itv(E).

Let Mi ∈ M s.t. Mi ∩ Dom(x) 6= ∅. If Mi is a singleton,
it comes immediately that Mi ⊆ Dom(x); if not, Mi cannot
contain any domain interval bound anyway, by construction
of M. Hence Mi ⊆ Dom(x)

Lemma 25 (Conditioning on a mesh element). Let φ be an
IA whose interpretation function is I, x ∈ Var(φ), M a mesh
of x in φ, and ~x a {x}-assignment. Let us denote M the ele-
ment of the mesh such that ~x(x) ∈M : for any {x}-assignment
~m such that ~m(x) ∈M , we have I|~x = I|~m.

Proof. Let Z = Var(φ) \ {x}, and ~z a Z-assignment.

(⇒) Suppose that I|~x(~z) = >, then I(~x . ~z) = >. Conse-
quently, there exists a path p in φ that is compatible with
~x and ~z. Let ~m be any {x}-assignment such that ~m(x) ∈M .
p is compatible with ~m, because for any edge E along p ver-
ifying Var(E) = x, we know that M ∩ Itv(E) 6= ∅ (since
~x(x) ∈ M and ~x(x) ∈ Itv(E)) and that consequently, by
definition of M, M ⊆ Itv(E). Hence, I(~m . ~z) = >, so
I|~m(~z) = >.

(⇐) Suppose that I|~x(~z) = ⊥, then I(~x . ~z) = ⊥, therefore
any path in φ that is compatible with ~z is not compatible
with ~x. Let ~m be any {x}-assignment such that ~m(x) ∈M .
Suppose that there exists a path p compatible with ~m . ~z:
any edge E along p s.t. Var(E) = x then verifies ~m(x) ∈
Itv(E). Hence, by definition of M, M ⊆ Itv(E); since we
chosed M such that ~x(x) ∈M , we get that ~x(x) ∈ Itv(E),
which is absurd, as p is not compatible with ~x. We infer
that I(~m . ~z) = ⊥ and that consequently I|~m(~z) = ⊥.

Lemma 26 (Forgetting/ensuring). Let φ be an IA whose
interpretation function is I, x ∈ Var(φ), and M =
{M1, . . . ,Mn} a mesh of x in φ. Let (~m1, . . . , ~mn) be a se-
quence of {x}-assignments such that for any 1 ≤ i ≤ n,
~mi(x) ∈Mi. We show that

• forget(I, {x}) =
∨n
i=1 I|~mi

;
• ensure(I, {x}) =

∧n
i=1 I|~mi

.

Proof. Let Z = Var(φ) \ {x}, and ~z a Z-assignment.

• Let us prove that forget(I, {x}) =
∨n
i=1 I|~mi

:

(⇒) Suppose that forget(I, {x})(~z) = >. This means there
exists a {x}-assignment ~x such that I(~z . ~x) = >, i.e.
I|~x(~z) = >. Let i be the integer verifying ~x(x) ∈ Mi

(it exists because M is a partition of R). Lemma 25
states that I|~mi

(~z) = >. It is hence obvious that
(
∨n
i=1 I|~mi

)(~z) = >.

(⇐) Suppose that forget(I, {x})(~z) = ⊥. Then any {x}-
assignment ~x verifies I(~z . ~x) = ⊥, and therefore I|~x(~z) =
⊥. Consequently (

∨n
i=1 I|~mi

)(~z) = ⊥.

• Let us prove that ensure(I, {x}) =
∧n
i=1 I|~mi

:

(⇒) Suppose that ensure(I, {x})(~z) = >. Then any {x}-
assignment ~x verifies I(~z . ~x) = >, and therefore I|~x(~z) =
>. Consequently (

∧n
i=1 I|~mi

)(~z) = >.

(⇐) Suppose that ensure(I, {x})(~z) = ⊥. This means there
exists a {x}-assignment ~x such that I(~z . ~x) = ⊥, i.e.
I|~x(~z) = ⊥. Let i be the integer verifying ~x(x) ∈ Mi

(it exists because M is a partition of R). Lemma 25
states that I|~mi

(~z) = ⊥. It is hence obvious that
(
∨n
i=1 I|~mi

)(~z) = ⊥.

Definition 27 (Restriction on a variable). For any IA φ, for
any x ∈ Var(φ), for any closed interval A ∈ R, the restriction
of φ to x ∈ A, denoted φ|x∈A is the IA that has the same graph
Γ as φ, except that for each edge E such that Var(E) = x,
Itvφ|x∈A

(E) = Itvφ(E) ∩A.

Note that the order in which restriction operations are
performed does not matter: (φ|xi∈A)|xj∈B = (φ|xi∈B)|xj∈A.
We shall denote φ|x1∈I1,...,xk∈Ik the restriction of φ to x1 ∈
I1, . . . , xk ∈ Ik.

Lemma 28 (Properties of restriction).

• For any IA φ, for any x ∈ Var(φ), for any closed interval
A, I(φ|x∈A) = I(φ) ∧ fx,A.

• For any IA φ, I(φ|x1∈A1,...,xk∈Ak
) = I(φ) ∧ fx1,A1 ∧ · · · ∧

fxk,Ak .
• If φ is a FIA, then φ|x1∈I1,...,xk∈Ik is also a FIA.

Proof. • Suppose that ~y |= φ|x∈A; then there exists a path in
φ such that for any edge E in the path, ~y(Var(E)) ∈ Itv(E)
whenever Var(E) 6= x, and ~y(x) ∈ Itv(E) ∩ A. Therefore
~y |= φ and ~y(x) ∈ A: ~y |= I(φ) ∧ fx,A.
Reciprocally, suppose that ~y |= I(φ) ∧ fx,A; then ~y |= I(φ),
and ~y |= fx,A.
So, there exists in φ a path p from the root to the sink
such that for any E on p, ~y(Var(E)) ∈ Itv(E); moreover
~y(x) ∈ A. Hence for any E on p, ~y(Var(E)) ∈ Itv(E) when-
ever Var(E) 6= x, and ~y(Var(E)) ∈ Itv(E) ∩ A whenever
Var(E) = x.
Because φ and φ|x∈A have the same edges, and by definition
of the intervals labelling the edges of φ|x∈A, this yields that
there exists in φ a path p from the root to the sink such
that for any E on p, ~y(Var(E)) ∈ Itv(E): ~y |= I(φ|x∈A).
So, I(φ|x∈A) = I(φ) ∧ fx,A.

• I(φ|x1∈A1,...,xk∈Ak
) = I(φ) ∧ fx1∈A1 · · · ∧ fxk∈Ak holds be-

cause the order in which restriction operations are per-
formed does not matter.

• The last item holds because A ⊆ B implies (A ∩ C) ⊆
(B ∩ C): if φ is focusing, then it is also the case for
φ|xi∈Ai

. Repeating the operation for 1 ≤ i ≤ k, we get
that φ|x1∈A1,...,xk∈Ak

is focusing.

Proof of the IA part of Proposition 18.

CO, VA, EQ. Any BDD can be translated into an IA in
polytime (Prop. 5). Let φ be a BDD, and ψ its corresponding
IA. If IA satisfied CO, we would have an algorithm polynomial
in |ψ|, and thus in the size of φ (Lemma 19), to decide whether
φ is consistent; however, BDD does not support CO unless
P = NP. The same goes for VA and EQ.

ME. If ME were polynomial, we would be able to decide
in polytime whether an IA is inconsistent, as an inconsistent
IA has no model; yet CO is hard.

MX, CX. If MX (resp. CX) were polynomial, we had a
polytime algorithm for deciding whether an IA is consistent
or not, whereas IA does not support CO.

FO. Similarly, given any IA φ, φ is consistent iff
forget(I(φ),Var(φ)) ≡ >. The only reduced IAs without any
variable are the empty and the sink-only automata, and test-
ing the emptyness of an IA is done is constant time. If IA

were satisfying FO, we would have a polytime algorithm for
deciding the consistency of any IA.

EN. Given any IA φ, φ is valid iff ensure(I(φ),Var(φ)) ≡ >.
Again, the only reduced IAs without any variable are the
empty and the sink-only automata. If IA were satisfying EN,
we would have a polytime algorithm for deciding the validity
of any IA.

∧tC. Thanks to Lemma 28, we only have to syntactically
condition φ, by replacing the label of each edge E such that
Var(E) = yi ∈ {y1, . . . , yk} by Itv(E) ∩Ai.

CD, SCD. Let φ be an IA, Y ⊆ Var(φ) and ~y a Y -
assignment. We denote φ|~y the IA obtained by replacing, for
each node N such as Var(N) ∈ Y , its label by Y and the label
of each E ∈ Out(N) by R if ~y(Var(E)) ∈ Itv(E) and by ∅
otherwise.

By definition of the conditioning, ~z ∈ Dom(Var(φ) \ {Y })
is a model of I(φ)|~y iff ~y . ~z is a model of φ.

Suppose that ~y . ~z is a model of φ. Then there is in φ a
path p such that ~z . ~y |= p. By construction, a copy p|~y of p
exists in φ|~y and ~z |= p|~y: ~z is a model of φ|~y.

Suppose that ~y . ~z is a not model of φ: for any path p in
φ, there is an edge E on this path such that ~y . ~z(Var(E)) /∈
Itv(E). Recall that the paths in φ|~y are the same than those
in φ and let p|~y be the one corresponding to p. If Var(E) ∈ Y ,
~y . ~z(Var(E)) /∈ Itv(E) has led to label the corresponding
edge in φ|~y by ∅: ~z cannot be compatible with this path. If
Var(E) ∈ Y , ~y . ~z(Var(E)) /∈ Itv(E) means that ~z(Var(E)) /∈
Itv(E): because these edges remain unchanged, ~z cannot be
compatible with this path. Therefore ~z is not compatible with
any path in φ|~y: ~z is not a model of φ|~y.

Hence I(φ|~y) = I(φ)|~y.
Since the construction of φ|~y is done in polytime, IA satisfies

CD (and consequently SCD).

MC. First condition the IA by the X-assignment that is to
be checked, say ~x. Then reduce: we get either the empty IA
(then the assigmement is not a model) or sink-only IA (then
~x is a model).

∨C, ∨BC. To make the disjunction of k IAs φ1, . . . , φk,
simply define a new node, say N , labelled by Y. Then, for
each φi, add an edge from N to Root(φi) labelled by R. Fuse
the sink nodes of the φi into a single one.

∧C, ∧BC. To make the conjunction of k IAs φ1, . . . , φk,
replace the sink of φi by the root of φi+1, for all 1 ≤ i ≤ k−1.
The root of the new IA is the one of φ1, its sink the one of
φk.

SFO. Let φ be an IA whose interpretation function is I,
and x ∈ Z = Var(φ) the variable to forget. Lemma 24 states
that it is possible to build in time quasi-linear in |φ| a mesh
M = {M1, . . . ,Mn} of x in φ. Now, thanks to Lemma 26, we
know that forget(I, {x}) =

∨n
i=1 I|~mi

; to obtain an IA whose
interpretation function is equal to forget(I, {x}), it is sufficient
to make n simple conditionings and n− 1 disjunctions. These
two operations are polytime (see SCD and ∨C above), and n
is linear in |φ|, thus SFO is feasible in time polynomial in |φ|.

SEN. Let φ be an IA whose interpretation function is I,
and x ∈ Z = Var(φ) the variable to ensure. Lemma 24 states
that it is possible to build in time quasi-linear in |φ| a mesh
M = {M1, . . . ,Mn} of x in φ. Now, thanks to Lemma 26, we
know that ensure(I, {x}) =

∧n
i=1 I|~mi

; to obtain an IA whose
interpretation function is equal to ensure(I, {x}), it is suffi-
cient to make n simple conditionings and n− 1 conjunctions.
These two operations are polytime (see SCD and ∧C above),
and n is linear in |φ|, thus SEN is feasible in time polynomial
in |φ|.

Lemma 29 (Correspondence between terms, clauses and
FIA). Any term (resp. clause) in propositional logic can be
expressed in the form of a FIA in polytime.

Proof. It is straightforward to convert any term (resp. any
clause) into an equivalent FBDD in polytime; now Prop. 6
states that any FBDD can be turned into an FIA in polytime.

Lemma 30 (Correspondence between DNF and FIA). Any
formula in the DNF language can be expressed in the form of
a FIA in polytime.

Proof. Lemma 29 states that any term can be turned into a
FIA in polytime, and FIA supports ∨C.

Proof of the FIA part of Proposition 18.

∨C, ∨BC. The same proof as for the IAs obviously hold. If
the φi are focusing, the resulting IA is also focusing.

VA, EQ. Any DNF can be turned into a FIA in polytime
(Lemma 30). DNF does not satisfy VA and EQ unless P = NP.
If FIA satisfied VA (resp. EQ), we would have a polytime al-
gorithm for deciding whether a DNF is valid (resp. two DNFs
are equivalent).

CO. Let φ be a FIA. We can reduce φ in polytime
(Prop. 14). Now, the only reduced FIA that is inconsistent is
the empty automaton. Indeed, suppose that φ has at least one
variable-edge E (a reduced IA cannot contain only Ynodes);
as Itv(E) ∩ Dom(Var(E)) 6= ∅, there is at least a value ω in
Itv(E) that is coherent with the domain of its variable. As E
is focusing, ω is also coherent with the preceding edges in φ.
Since it is the case for all edges, φ cannot be inconsistent.

CX. The following polynomial algorithm (each edge
is encountered once) computes the context of y in
φ:

1: reduce φ
2: let C := ∅
3: mark the sink of φ
4: for all node N in φ, ordered from the sink to the root

do
5: if N is marked then
6: for all E ∈ In(N) do
7: if Var(E) = y then
8: add Itv(E) to C
9: else

10: mark Src(E)

11: if the root of φ is marked then
12: C := Dom(y)
13: return C ∩Dom(y)

The idea is to find the y-frontier of the sink (e.g. the set of
the y-labelled nodes N such that there exists a path from
a child of N to the sink not mentioning y), by pulling up a
mark meaning that no y-labelled node has been encountered.
If a mark reaches the root, there is at least one path from
the root to the sink on which there is no y-labelled node, so
the context of y in φ is Dom(y) (because φ is reduced, so
the path is trivially satisfiable, in the same way that a non-
empty reduced FIA is satisfiable). If not, the context of y is
the union C of the intervals labelling edges by which the y-
frontier access the sink, intersected with the domain of y (this
intersection being polytime w.r.t. the number of intervals in C
and Dom(y), and thus w.r.t. |φ|, which bounds both of them).

MX. Let φ be a FIA. If it is consistent (which can be verified
in polytime), let ~x ∈ Dom(Var(φ). First, we reduce φ, which
can be done in polytime (Prop. 14). Starting from the sink,
we chose a path to the root. For each edge E of this path, we
chose a value ω ∈ Itv(E)∩Dom(Var(E)) (as φ is reduced, we
know that this set is not empty; the intersection can be done
in time polynomial w.r.t. the number of intervals representing
Dom(Var(E))), and assign it to ~x: ~x(Var(E)) := ω, except if
we already encountered this variable (we know that the value
we chosed before is also compatible with this edge, as φ is
focusing) or if Var(E) = Y. When the root is reached, ~x is a
model of φ (for every unencountered variable, ~x was set to a
domain-compatible value at the beginning). This procedure
is done in time polynomial in |φ|.

MC. Inferred from the fact that MC holds for IA.

∧BC, ∧C. Thanks to Prop. 6, any OBDD can be turned
into an equivalent FIA in polytime. If FIA supported ∧BC,
we would have a polytime (Lemma 19) algorithm to decide
whether the conjunction of two OBDDs (the variable order-
ings being possibly different in each OBDD) is consistent,
forasmuch as FIA supports CO; yet, this problem is NP-
complete, as shown in Lemma 8.14 of [13]. Therefore FIA does
not support ∧BC, and a fortiori does not support ∧C. Syn-
taxe de variable

∧tC. The same proof as for the IAs holds, since the oper-
ation described does not compromise the focusing property,
thanks to the last item of Lemma 28.

SEN, EN. Let φ1 and φ2 two FIAs. Let Z = Var(φ1) ∪
Var(φ2), and a variable x /∈ Z of domain R. We build the
automaton ψ by merging the sinks of φ1 and φ2, and adding
a node which will be the root of ψ, labelled by x, with one
outgoing edge labelled by R− and pointing to the root of
φ1, and a second outgoing edge labelled by R+ and pointing
to the root of φ2. ψ is obviously focusing, since φ1 and φ2

are, and x is mentioned in one node only. We will prove that
ensure(I(ψ), {x} = I(φ1) ∧ I(φ2), i.e. for any Z-assignment ~z,
(I(φ1) ∧ I(φ2))(~z) = > ⇔ ∀~x ∈ Dom({x}), I(ψ)(~x . ~z) = >.

(⇒) Let ~z be a Z-assignment verifying (I(φ1)∧ I(φ2))(~z) =
>. Let ~x be a {x}-assignment: either ~x(x) ∈ R−, in which

case I(ψ)(~x . ~z) = >, as I(φ1)(~z) = >; or ~x(x) ∈ R+,
in which case I(ψ)(~x . ~z) = > too, because this time
I(φ2)(~z) = >.

(⇐) Let ~z be a Z-assignment verifying (I(φ1)∧ I(φ2))(~z) =
⊥. Either I(φ1)(~z) = ⊥, or I(φ2)(~z) = ⊥.In the first case,
let us take ~x such that ~x(x) = −1: there exists no path
in ψ that is compatible with ~x . ~z, since the value of x
forces to chose the edge leading to φ1, in which no path
is compatible with ~z. Symmetrically, in the second case,
taking ~x such that ~x(x) = 1, there exists no path in ψ that
is compatible with ~x . ~z. Hence, there always exists a ~x such
that I(ψ)(~x . ~z) = ⊥.

We thus proved that ensure(I(ψ), {x}) = I(φ1) ∧ I(φ2). It is
possible to build ψ in time linear in the size of φ1 and φ2.
Therefore, if FIA supported SEN, we had a polytime algo-
rithm allowing to build a FIA equivalent to the conjunction
of two FIAs. Yet it is impossible, unless P = NP (see ∧BC).
Hence FIA does not support SEN, and a fortioriEN.

CD, SCD. Let φ be a FIA, Y ⊆ Var(φ) and ~y a Y -
assignment. Let φ|~y be the IA defined in the proof of CD

on IAs, and φ′|~y the IA obtained by applying the reduction
operation to φ|~y. We show that φ′|~y is focusing.

Indeed, in φ|~y the only edges that have been modified are
those whose corresponding edge in φ is associated with a vari-
able in Y . In φ|~y, they are all associated with Y.

As for the other edges in φ|~y, since they all remain un-
changed, they are still focusing. We infer from Lemma 21 that
φ′|~y is focusing w.r.t. all variables in Var(φ) \ Y = Var(φ′|~y).
Then Lemma 22 shows that φ′|~y is focusing. Because φ′|~y ≡ φ|~y,
I(φ|~y) = I(φ)|~y and φ′|~y is obtained in polytime, FIA supports
CD (and hence SCD).

ME. Let φ be a FIA. We check (in polytime) whether
φ is consistent ; if it is not the case, the empty set is re-
turned. Otherwise, we build a decision tree representing a
set of boxes, whose union is equal to Mod(φ). For each vari-
able xi ∈ Var(φ) = {x1, . . . , xn}, let us build (in time quasi-
linear w.r.t. |φ|) a mesh Mi = {M i

1, . . . ,M
i
ni
} of xi in φ, in

the way described in the proof of Lemma 24). For each Mi,
we consider a sequence (~mi

1, . . . , ~m
i
ni

) of {xi}-assignments
such that ~mi

k(xi) ∈ M i
k. Then, we create a tree T , ini-

tially containing only one node, labelled by the empty as-
signment. We complete the tree thanks to the following pro-
cess:

1: for i from 1 to |Var(φ)| do
2: let F be the set of T ’s leaves.
3: for all F in F do
4: let ~z be the {x1, . . . , xi}-assignment labelling F .
5: for j from 1 to ni do
6: if I(φ)|~z . ~mi

j
is consistent then

7: add a child to F , labelled by ~z . ~mi
j .

8: remove F from F .
9: let B := ∅

10: for all F leaf in T do
11: let ~z be the Var(φ)-assignment labelling F .
12: for each i, let ji be the integer (1 ≤ ji ≤ ni) such that

~z(xi) = ~mi
ji (we know ji exists, by construction).

13: add to B the box defined by M1
j1 × · · · ×M

n
jn .

Thanks to Lemma 25, we know that conditioning xi to ~mi
j

gives the same result as to any value in M i
j ; that is why at

the end, we return the set of boxes corresponding to the set
of assignments we obtained. Since the meshes are partitions
of R, we tested every possible value for each variable, so every
model of φ is in at least one box of B. Since each element of a
mesh is either completely included in or completely excluded
from the domain of the corresponding variable, every box in
B is included in Dom(Var(φ)).

At the end of the algorithm, all the leaves of T are at the
same level (i.e. the paths of T are of equal length); indeed,
for each node, at least one of the tests of l. 6 must pass (as
the current FIA is consistent). It implies that at each incre-
mentation of i, |F| ≤ |B|. Moreover, ni is bounded by 4|φ| for
each i (see proof of Lemma 24). Hence, the test of l. 6 is not
done more than 4n.|B|.|φ| in the whole algorithm.

Now, this test is made in time polynomial w.r.t. |φ|, as
FIA supports CO and SCD. Hence, the global algorithm is
polytime w.r.t. |B| and |φ| (as n ≤ φ).

SFO. Let ψ be any reduced FIA such that Var(ψ) 6= ∅,
and let x ∈ Var(ψ). We denote ψ↓x the FIA obtained by
changing every x-labelled node in ψ by an Y-labelled node
and every outgoing edge of such nodes by a R-labelled edge.
We will show that I(ψ↓x) = forget(I(ψ), {x}), by induction on
the number of nodes in ψ.

For n ∈ N, let P(n) be the following proposition: “For any
reduced FIA ψ such that Var(ψ) 6= ∅ and ψ contains n nodes,
and any x ∈ Var(ψ), I(ψ↓x) = forget(I(ψ), {x})”.

(I) P(0) and P(1) are obviously true: the forgetting of
any variable in the empty automaton (resp. the sink-only au-
tomaton) always returns ⊥ (resp. >), and ψ is exactly the
same as ψ↓x in both cases.

(II) Let n ≥ 2. Let us suppose that P(k) is true for
all k < n. We need to infer that P(n) is also true. Let ψ
be a reduced FIA such that Var(ψ) 6= ∅ and ψ contains n
nodes, and x ∈ Var(ψ). Let Out(Root(ψ)) = {E1, . . . , Em},
and for all 1 ≤ i ≤ m, let us denote ψi the subgraph rooted
at Dest(Ei). Obviously, each ψi contains strictly less than n
nodes, so for all 1 ≤ i ≤ m,

I(ψ↓xi) = forget(ψi, {x}) . (1)

It is also clear that the FIA obtained by replacing in ψ each
ψi by ψ↓xi , and if Var(Root(ψ)) = x, modifying Root(ψ) such
that Var(Root(ψ)) = Y and ∀E ∈ Out(Root(ψ)), Itv(E) = R,
corresponds exactly to ψ↓x. We will now show that I(ψ↓x) =
forget(I(ψ), {x}). Let Z = Varψ \ {x}. We have to prove that

∀~z ∈ Dom(Z), I(ψ↓x)(~z) = > ⇔
∃~x ∈ Dom({x}), I(ψ)(~x . ~z) = > .

Let ~z be any Z-assignment:

(⇒) if I(ψ↓x)(~z) = >, there is a path in the graph that
is compatible with ~z: let E↓xi be the first edge on this
path, and ψ↓xi the subgraph to the root of which it points.
We have I(ψ↓xi)(~z) = >, by definition of the semantics of
an IA. Therefore, thanks to Eq. (1), there exists an {x}-
assignment ~x such that I(ψi)(~x . ~z) = >. Let Ei be the

edge in ψ coming from Root(ψ) and pointing to the root of
ψi.

– if Var(Ei) 6= x, by construction of ψ↓x, Ei and E↓xi have
the same variable and labelling interval. Since E↓xi is
compatible with ~z, Ei also is, so I(ψ)(~x . ~z) = >.

– if Var(Ei) = x, we can harmlessly suppose that ~x(x) ∈
Itv(Ei). Indeed, I(ψi)(~x . ~z) = >, so there is a path in ψi
that is compatible with ~x: either there is an x-node along
this path, in which case ~x(x) ∈ Itv(Ei), as ψ is focusing;
or there is not, in which case any value in Dom(x) can be
chosen (and Dom(x)∩Itv(Ei) 6= ∅, because ψ is reduced).
Therefore I(ψ)(~x . ~z) = >.

(⇐) if I(ψ↓x)(~z) = ⊥, let us consider any E↓xi ∈
Out(Root(ψ↓x)), ψ↓xi the subgraph to the root of which
it points, and Ei the corresponding edge in ψ (i.e. the one
which points to the root of ψi):

– if either Var(E↓xi) = Y or ~z(Var(E↓xi)) ∈ Itv(E↓xi),
we know that I(ψ↓xi)(~z) = ⊥. Therefore, for each {x}-
assignment ~x, I(ψi)(~x . ~z) = ⊥ (thanks to Eq. (1)), so Ei
belongs to no path in ψ that is compatible with ~x . ~z.

– in the other cases, we have (i) Var(E↓xi) 6= Y and
(ii) ~z(Var(E↓xi)) /∈ Itv(E↓xi). By construction of ψ↓x,
(i) implies that Ei and E↓xi have the same variable
and labelling interval. We infer from this and from (ii)
that ~z(Var(Ei)) /∈ Itv(Ei), so we cannot find an {x}-
assignment ~x such that Ei belongs to a path in ψ that
is compatible with ~x . ~z.

We deduce from this that there is no {x}-assignment ~x such
that I(ψ)(~x . ~z) = >.

The two points proves that I(ψ↓x) = forget(I(ψ), {x});
therefore P(n) is true.

(III) Since both the basis (I) and the inductive step (II)
have been proven, we showed by induction that P(n) holds
for all n ∈ N.

Since for any reduced FIA ψ, building its corresponding
ψ↓x only requires to encounter each node and each edge once,
we can obtain, in time linear in the size of ψ, a FIA whose
interpretation function is equal to forget(I(ψ), {x}). As reduc-
tion can be done in polytime on FIAs, this proves that FIA

supports SFO.

FO. As the single forgetting operation can be done in lin-
ear time on reduced FIAs, the general forgetting operation
is polytime on reduced FIAs. As reduction can be done in
polytime on FIAs, this proves that FIA supports FO.

B Problems

The classical ring problem is described in [6]. The obsmem

and robot problems can be found in the following technical
report: [12].

We detail here the two versions of the drone problem.

B.1 Discrete Drone Problem

This problem deals with a competition drone (Micro
Air Vehicle Conference Competition, see for example

http://www.mav07.org) having to achieve different goals on
a number of zones.

There are three different kinds of goal:

• identify the target of a given zone, by doing “eight”-shapes
above it

• localize the target in a given zone, by scanning it

• drop a marble on the target of a given zone

Each zone contains at most one goal (no target has to be
both identified and localized). There is a special “home” zone
where the drone takes off and lands; it cannot land anywhere
else without losing the competition.

B.1.1 Data

The following data define an instance of the problem:

• An integer nbZones, the total number of zones;

• An integer nbZonesId , the total number of zones containing
a target to identify;

• An integer nbZonesLoc, the total number of zones contain-
ing a target to localize;

• An integer nbZonesDrop, the total number of zones con-
taining a target to touch;

• An integer givenTime, the number of minutes given to com-
plete the mission;

• An integer nbMarblesMax , the maximal number of marbles
that the drone can carry;

• An integer idDuration, the number of minutes needed to
identify a target;

• An integer locDuration, the number of minutes needed to
localize a target;

• An integer dropDuration, the number of minutes needed to
touch a target;

• An integer toffDuration, the number of minutes needed to
take off;

• An integer landDuration, the number of minutes needed to
land;

• A sequence of integers (zoneIdn)1≤n≤nbZonesId , all different
and between 0 and nbZones − 1, representing the zones
containing a target to identify;

• A sequence of integers (zoneLocn)1≤n≤nbZonesLoc , all differ-
ent and between 0 and nbZones−1, representing the zones
containing a target to localize;

• A sequence of integers (zoneDropn)1≤n≤nbZonesDrop , all dif-
ferent and between 0 and nbZones − 1, representing the
zones containing a target to touch;

• A table of integers (gotoDurationn)1≤i≤nbZones,1≤j≤nbZones ,
indicating the time (in minutes) necessary for the drone to
go from zone i to zone j.

Since each zone contains at most one target, it is obvious
that nbZonesId +nbZonesLoc +nbZonesDrop ≤ nbZones, and
that one integer cannot belong to different sequences.

B.1.2 State Variables

State variables are the following:

• A Boolean flying indicating whether the drone is flying;

• An integer zone representing the zone it is in;

• An integer remTime, the number of remaining minutes;

• An integer nbMarbles, the number of remaining marbles;

• A sequence of Booleans (goalAchn)0≤n<nbZones , indicating
for each zone whether its corresponding goal has been
achieved.

B.1.3 Decision Variables

Decision variables are the following:

• A Boolean TOFF , true iff the drone takes off;

• A Boolean LAND , true iff the drone lands;

• A Boolean EIGHT , true iff the drone identifies a target
(making an “eight” above);

• A Boolean SCAN , true iff the drone localizes a target (scan-
ning the zone);

• A Boolean DROP , true iff the drone drops a marble;

• A Boolean GOTO , true iff the drone goes from a zone to
another;

• An integer zoneGOTO , representing the zone to which
heads the drone if GOTO is true.

B.1.4 Preconditions

The set P (S,D) contains constraints deciding which decisions
are possible to be made, according to the state.

• The following constraint (⊕ being the “xor” operator)

TOFF ⊕LAND⊕EIGHT ⊕SCAN ⊕DROP⊕GOTO

forbids that more than one decision is made at the same
time.

• Given time:
remTime ≤ givenTime

There cannot remain more time than the given time.

• Maximal number of marbles:

nbMarbles ≤ nbMarblesMax

There cannot remain more marbles than the maximum.

• Precondition to the takeoff:

TOFF → ((zone = home) ∧ ¬flying

∧ (remTime ≥ toffDuration))

It must be landed at home, and have enough time to take
off.

• Precondition to the landing:

LAND → ((zone = home) ∧ flying

∧ (remTime ≥ landDuration))

It must be flying at home, and have enough time to land.

• Precondition to the identification:

EIGHT → (flying ∧ (remTime ≥ idDuration))

It must be flying and have enough time.

EIGHT → (zone ∈ {zoneId1, . . . , zoneIdnbZonesId})

It must be on a zone containing a target to identify.

• Precondition to the localization:

SCAN → (flying ∧ (remTime ≥ locDuration))

It must be flying and have enough time.

SCAN → (zone ∈ {zoneLoc1, . . . , zoneLocnbZonesLoc})

It must be on a zone containing a target to localize.

• Precondition to the dropping:

DROP → (flying ∧ (remTime ≥ dropDuration)

∧ (nbMarbles > 0))

It must be flying, have enough time, and have enough mar-
bles.

DROP →
(
zone ∈ {zoneDrop1, . . . , zoneDropnbZonesDrop}

)
It must be on a zone containing a target to touch.

• Precondition to the moving

GOTO → (flying

∧
(
remTime ≥ gotoDurationzone,zoneGOTO

))
It must be flying and have enough time to go to the specified
zone.

B.1.5 Effects

The set E(S,D, S′) contains constraints indicating the result-
ing state, according to the previous state and the decision
made. First, the following constraints describe how the state
changes when a given decision is made.

• Effects of a takeoff:

TOFF →
(
flying ′

∧
(
remTime ′ = (remTime − toffDuration)

))
The drone is flying, and the duration of a takeoff has been
removed from the remaining time.

• Effects of a landing:

LAND →
(
¬flying ′

∧
(
remTime ′ = (remTime − landDuration)

))
The drone is landed, and the duration of a landing has been
removed from the remaining time.

• Effects of an identification:

EIGHT → (remTime ′ = (remTime − idDuration))

The duration of an identification has been removed from
the remaining time.

EIGHT → goalAch ′zone

The goal corresponding to this zone has been achieved.

• Effects of an localization:

SCAN → (remTime ′ = (remTime − locDuration))

The duration of a localization has been removed from the
remaining time.

SCAN → goalAch ′zone

The goal corresponding to this zone has been achieved.

• Effects of a dropping:

DROP → (
(
nbMarbles ′ = (nbMarbles − 1)

)
∧
(
remTime ′ = (remTime − dropDuration)

)
)

The drone has lost a marble, and the duration of a dropping
has been removed from the remaining time.

DROP → goalAch ′zone

The goal corresponding to this zone has been achieved.

• Effects of a move:

GOTO → (
(
zone ′ = zoneGOTO

)
∧ (remTime ′ =(

remTime − gotoDurationzone,zoneGOTO

)
)

The drone is in the specified zone, and the duration of the
journey has been removed from the remaining time.

B.1.6 Conditions of state change

These constraints are also in E(S,D, S′), but they define all
decisions modifying a given state variable.

• Decisions modifying the flying state:

¬
(
flying ′ ↔ flying

)
→ (TOFF ∨ LAND) ;

The flying state can only change when the drone takes off
or lands.

• Decisions modifying the zone:

¬
(
zone ′ = zone

)
→ GOTO ;

The zone can only change when the drone moves.

• Decisions modifying the number of marbles:

¬
(
nbMarbles ′ = nbMarbles

)
→ DROP ;

The number of marbles canonly change when the drone
drops one.

• Decisions modifying the goals achievement state:

¬
(
goalAch ′k ↔ goalAchk

)
→

((EIGHT ∧ (k ∈ {zoneId1, . . . , zoneIdnbZonesId}))
∨ (SCAN ∧ (k ∈ {zoneLoc1, . . . , zoneLocnbZonesLoc}))

∨(DROP∧
(
k ∈ {zoneDrop1, . . . , zoneDropnbZonesDrop}

)
))

A goal can only be achieved if the corresponding deci-
sion has been made and the drone is in the corresponding
zone.dante.

• Goals associated to targetless zones:

zone /∈ ({zoneId1, . . . , zoneIdnbZonesId}
∪ {zoneLoc1, . . . , zoneLocnbZonesLoc}
∪ {zoneDrop1, . . . , zoneDropnbZonesTou})

→
(
goalAchzone ∧ goalAch ′zone

)
The goal is considered as achieved from the start in the
zones containing no target.

Goal of the mission
The goal of the mission is given by this constraint:

¬flying ′ ∧ (zone ′ = home) ∧
nbZones−1∧

k=0

goalAch ′k

At the end, the drone must be landed at home, and having
achieved all zone goals.

B.2 Continuous Drone Problem

The continuous version of this problem is the same as the
discrete version, except for the “remaining time” state vari-
able, that is a real variable; the corresponding data (initial
given time, action durations, journey durations) are also real
numbers.

