KC for Decision

IAs 0000000 000000 0000000 SDs 0000000 Conclusion

0/45

Knowledge Compilation for Online Decision-Making: Application to the Control of Autonomous Systems

Alexandre Niveau Hélène Fargier Cédric Pralet Gérard Verfaillie

March 27th, 2012

SDs 0000000 Conclusion

Autonomous System

- Autonomous system: must be able to make decisions, depending on the current situation
 - current observations
 - current goals

Example (Explorer robot)

- explores a zone
- gather samples
- when enough samples have been gathered, go to another zone

$\rightarrow\,$ finding a decision policy

• Problem hard to solve in the general case

IAs 0000000 0000000 0000000 SDs 0000000 Conclusion

Control of an Autonomous System

- Solving the problem online:
 - limited by the embedded computational power
 - $\rightarrow~\mbox{reactivity not ensured}$
- Solving the problem offline:
 - anticipate all decisions for every possible situation
 - embed a set of "decision rules"
 - $\rightarrow\,$ ensures a good reactivity. . . but limited by the embedded memory space

SDs 0000000 Conclusion

Looking for a Compromise

• Need for a tradeoff between reactivity and spatial compactness

 \rightarrow maximizing reactivity under memory space constraints

• This is the object of knowledge compilation

Conclusion

Principle of Knowledge Compilation

- Idea: transforming the problem into a compiled form that
 - makes its resolution tractable
 - is as compact as possible
- Can be seen as a translation of the problem into some target compilation language.
- The choice of the target language is crucial

IAs 0000000 0000000 SDs 0000000 Conclusion

Principle of Knowledge Compilation

- Translation step: may be hard
 - \rightarrow but done offline
 - $\rightarrow\,$ and done only once
- Resolution step: tractable
 - $\rightarrow\,$ fast even online
 - ightarrow and done countless times
- $\rightarrow\,$ Knowledge compilation shifts as much as possible of the computational effort before the system's launching

Conclusion

Goal of the Thesis

- There exists numerous target compilation languages:
 - the decision diagrams family (BDDs, FBDDs, OBDDs...);
 - finite-state automata (MDDs);
 - the NNF family (DNNFs, d-DNNFs...)...

(日) (周) (日) (日) (日)

Conclusion

6/45

Goal of the Thesis

- There exists numerous target compilation languages:
 - the decision diagrams family (BDDs, FBDDs, OBDDs...);
 - finite-state automata (MDDs);
 - the NNF family (DNNFs, d-DNNFs...)...
- Proven useful in various domains:
 - model-checking
 - product configuration
 - diagnostic
 - planning

イロト イポト イヨト イヨト

Conclusion

Goal of the Thesis

- There exists numerous target compilation languages:
 - the decision diagrams family (BDDs, FBDDs, OBDDs...);
 - finite-state automata (MDDs);
 - the NNF family (DNNFs, d-DNNFs...)...
- Proven useful in various domains:
 - model-checking
 - product configuration
 - diagnostic
 - planning

Goal of the thesis

Study whether KC can be applied to realistic problems of aeronautical or spatial autonomous system control.

Problem

SDs 000000 Conclusion

Outline

- 2 Knowledge Compilation for Decision-Making
 - Decision Policy
 - Knowledge Compilation

Interval Automata

- Structure and semantics
- Exploitation of a Policy Using IAs
- Building FIAs

KC for Decision

IAs 0000000 000000 SDs 000000 Conclusion

Outline

Introduction to the problem

- 2 Knowledge Compilation for Decision-Making
 - Decision Policy
 - Knowledge Compilation

3 Interval Automata

- Structure and semantics
- Exploitation of a Policy Using IAs
- Building FIAs
- 4 Set-labeled Diagrams

KC for Decision

IAs 0000000 0000000 SDs 000000 Conclusion

Outline

Introduction to the problem

Knowledge Compilation for Decision-Making Decision Policy

Knowledge Compilation

3 Interval Automata

- Structure and semantics
- Exploitation of a Policy Using IAs
- Building FIAs

4 Set-labeled Diagrams

IAs

SDs 0000000 Conclusion

Planning Problem

- Framework: non-deterministic planning
 - state variables, decision variables
 - initial states, goal states
 - transition relation

Example (Transition relation)

current state	decision	next state
light,	press_button	¬light, ¬button
\neg light, \neg button, bulb_OK	press_button	light, button, bulb_OK
\neg light, \neg button, bulb_OK	press_button	\neg light, button, \neg bulb_OK
¬bulb_OK	change_bulb	bulb_OK

KC for Decision

IAs 0000000 0000000 SDs 0000000

Conclusion

Decision Policy

• Solution: decision policy (relation associating actions to each reachable state)

Example (Decision policy)

if you observe that	then
there is no light and the button is off	press the button
there is no light and the button is on	change the bulb
there is light	enjoy

- ightarrow Boolean function δ , involving two kinds of variables:
 - state variables S;
 - decision variables D.

• $\delta(\vec{s}, \vec{d}) = \top \quad \rightarrow \quad \vec{d}$ is a suitable decision in state \vec{s} .

IAs 0000000 000000 0000000 SDs 0000000 Conclusion

Decision Policy as a Boolean Function

Example (Decision policy)

if	then
there is no light and the button is off	press the button
there is no light and the button is on	change the bulb
there is light	enjoy

KC for Decision

IAs 0000000 000000 0000000 SDs 0000000 Conclusion

Decision Policy as a Boolean Function

Example (Decision policy)

⇒ S	đ	
¬light, ¬button	press_button, ¬change_bulb	
\neg light, button	$\neg press_button, change_bulb$	
light, button	$\neg press_button, \neg change_bulb$	
light, ¬button	$\neg press_button, \neg change_bulb$	

KC for Decision

IAs 0000000 000000 0000000 SDs 0000000 Conclusion

Decision Policy as a Boolean Function

Example (Decision policy)

\overrightarrow{S}	\vec{d}	$\delta(\vec{s}, \vec{d})$
¬light, ¬button	press_button, ¬change_bulb	T
¬light, button	¬press_button, change_bulb	Т
light, button	$\neg press_button, \neg change_bulb$	Т
light, ¬button	$\neg press_button, \neg change_bulb$	T
¬light, ¬button	$\neg press_button, \neg change_bulb$	\perp
\neg light, \neg button	$\neg press_button, change_bulb$	\perp
\neg light, button	$\neg press_button, \neg change_bulb$	\perp
light, ¬button	press_button, \neg change_bulb	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

SDs 0000000 Conclusion

Exploiting a Policy

Two operations needed:

• assign state variables according to observations: conditioning

Example (Exploiting a policy)

\overrightarrow{s}	d	$\delta(\vec{s}, \vec{d})$
¬light, ¬button	press_button, ¬change_bulb	Т
¬light, button	¬press_button, change_bulb	Т
light, button	$\neg press_button, \neg change_bulb$	Т
light, ¬button	$\neg press_button, \neg change_bulb$	Т
¬light, ¬button	$\neg press_button, \neg change_bulb$	\perp
¬light, ¬button	¬press_button, change_bulb	\perp
¬light, button	$\neg press_button, \neg change_bulb$	\perp
light, ¬button	press_button, ¬change_bulb	
		⊥ ⊥

SDs 0000000 Conclusion

Exploiting a Policy

Two operations needed:

• assign state variables according to observations: conditioning

Example (Exploiting a policy)

\overrightarrow{s}	đ	$\delta(\vec{s}, \vec{d})$
¬light, ¬button	press_button, ¬change_bulb	T
¬light, button	¬press_button, change_bulb	T
light, button	$\neg press_button, \neg change_bulb$	Т
light, ¬button	$\neg press_button, \neg change_bulb$	Т
¬light, ¬button	$\neg press_button, \neg change_bulb$	
¬light, ¬button	¬press_button, change_bulb	\perp
¬light, button	$\neg press_button, \neg change_bulb$	
light, ¬button	press_button, \neg change_bulb	
		⊥

SDs 0000000

Conclusion

Exploiting a Policy

Two operations needed:

• assign state variables according to observations: conditioning

Exam	Example (Exploiting a policy)				
	\overrightarrow{s}	đ	$\delta(\vec{s}, \vec{d})$		
	¬light, ¬button	press_button, ¬change_bulb	Т		
	¬light, button	¬press_button, change_bulb	T		
	light, button	$\neg press_button, \neg change_bulb$	T		
	light, ¬button	$\neg press_button, \neg change_bulb$	Т		
	¬light, ¬button	¬press_button, ¬change_bulb			
	¬light, ¬button	¬press_button, change_bulb			
	¬light, button	$\neg press_button, \neg change_bulb$			
	light, ¬button	press_button, ¬change_bulb			

SDs 0000000

Conclusion

Exploiting a Policy

Two operations needed:

• assign state variables according to observations: conditioning

Exam	Example (Exploiting a policy)			
	d	$\delta(\vec{s}, \vec{d})$		
	press_button, ¬change_bulb	Т		
	¬press_button, change_bulb	Т		
	$\neg press_button, \neg change_bulb$	Т		
	$\neg press_button, \neg change_bulb$	Т		
	¬press_button, ¬change_bulb	L L		
	¬press_button, change_bulb	<u> </u>		
	¬press_button, ¬change_bulb	1		
	press_button, ¬change_bulb	1		

Conclusion

Exploiting a Policy

Two operations needed:

- assign state variables according to observations: conditioning
- produce one action among the possible ones: model extraction

Example (Exploiting a policy)			
	\overrightarrow{d}	$\delta(\vec{s}, \vec{d})$	
	press_button, ¬change_bulb		
	¬press_button, ¬change_bulb		
	¬press_button, change_bulb		

Conclusion

Exploiting a Policy

Two operations needed:

- assign state variables according to observations: conditioning
- produce one action among the possible ones: model extraction

Example (Exploiting a policy)				
	d	$\delta(\vec{s}, \vec{d})$		
	press_button, ¬change_bulb			
	$\neg press_button, \neg change_bulb$			
	¬press_button, change_bulb			

KC for Decision

IAs 0000000 000000 SDs 000000 Conclusion

Outline

Knowledge Compilation for Decision-Making Decision Policy

Knowledge Compilation

3 Interval Automata

- Structure and semantics
- Exploitation of a Policy Using IAs
- Building FIAs
- 4 Set-labeled Diagrams

IAs 0000000 0000000 SDs 0000000 Conclusion

Knowledge Compilation

- A problem is a set of operations on a knowledge base
 - knowledge base: propositional formula, constraint network, ...
 - operations: combining formulas, checking properties, ...
- Compilation of a problem: translation of the knowledge base into a target language such that
 - operations on the compiled form are tractable
 - the compiled form is as compact as possible

IAs 0000000 0000000 SDs 0000000 Conclusion

Knowledge Compilation for Planning

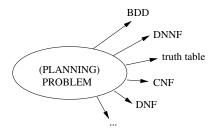
Applying KC to the control of autonomous systems:

- planning problem solved online
 - compilation of a transition relation
 - operations on the compiled form: conditioning, variable elimination...

IAs 0000000 0000000 SDs 0000000 Conclusion

Knowledge Compilation for Planning

Applying KC to the control of autonomous systems:

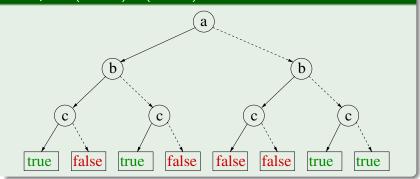

- planning problem solved online
 - compilation of a transition relation
 - operations on the compiled form: conditioning, variable elimination...
- planning problem solved offline
 - compilation of a decision policy
 - operations on the compiled form: conditioning, model extraction

KC for Decision

IAs 0000000 000000 SDs 0000000 Conclusion

Target Languages

• Various target compilation languages are suitable

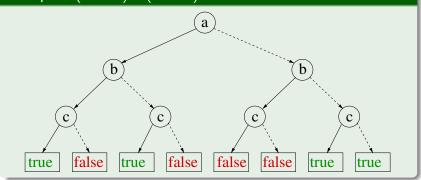

• An example: binary decision diagrams (BDDs)

KC for Decision

IAs 0000000 0000000 SDs 0000000 Conclusion

Compilation: Example of BDDs

Example : $(b \rightarrow a) \land (a \rightarrow c)$

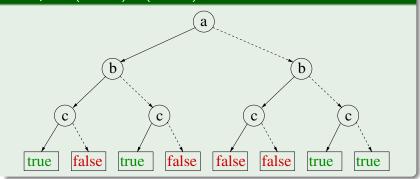


KC for Decision

IAs 0000000 0000000 SDs 0000000 Conclusion

Compilation: Example of BDDs

Example : $(b \rightarrow a) \land (a \rightarrow c)$

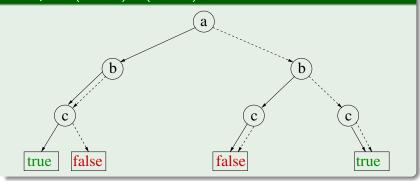

- Each path in the tree: assignment of all variables.
- The leaf is the value of the function for this assignment.

KC for Decision

IAs 0000000 0000000 SDs 0000000 Conclusion

Compilation: Example of BDDs

$\mathsf{Example}:\,(b\to a)\wedge(a\to c)$

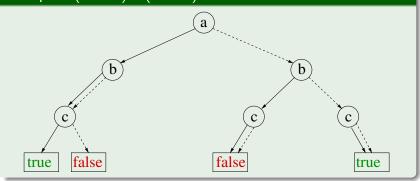

• Merging isomorphic subgraphs...

KC for Decision

IAs 0000000 0000000 SDs 0000000 Conclusion

Compilation: Example of BDDs

Example : $(b ightarrow a) \wedge (a ightarrow c)$


• Isomorphic subgraphs merged

KC for Decision

IAs 0000000 0000000 SDs 0000000 Conclusion

Compilation: Example of BDDs

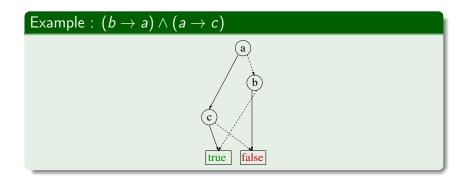
Example : $(b ightarrow a) \wedge (a ightarrow c)$

• Removing redundant nodes...

KC for Decision

IAs 0000000 0000000 SDs 0000000 Conclusion

Compilation: Example of BDDs


Example : $(b \rightarrow a) \land (a \rightarrow c)$ а b false true false true

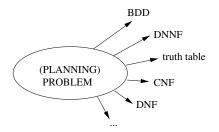
• Redundant nodes removed

IAs 0000000 0000000 SDs 0000000 Conclusion

Compilation: Example of BDDs

• The BDD can be exponentially more compact than the tree

 KC for Decision
 IAs

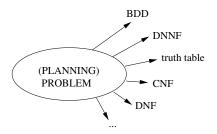

 00000
 0000000

 000000000000
 0000000

Problem

SDs 0000000 Conclusion

Choosing a Target Language


• What is the most appropriate for my application?

[[]Darwiche and Marquis, 2002] Darwiche, A. and Marquis, P. (2002). A Knowledge Compilation Map. JAIR, 17:229–264.

Conclusion

Choosing a Target Language

- What is the most appropriate for my application? → use the knowledge compilation map [Darwiche and Marquis, 2002]
- Compares target languages according to their:
 - efficiency on operations
 - succinctness.

Problem

KC for Decision

IAs 0000000 000000 0000000 SDs 0000000 Conclusion

Knowledge Compilation Map: Operations

• All online manipulations boil down to elementary queries and transformations

L	CO (consistency) VA (validity)	MX (model extr.) CE (clause entailmt.) IM (implicant check)	EQ (equivalence) SE (entailment)	CT (model count) ME (model enum.)
NNF	0 0	0 0 0	0 0	0 0
DNNF	$\sqrt{\circ}$	$\sqrt{\sqrt{\circ}}$	0 0	∘ √
BDD	0 0	0 0 0	0 0	0 0
FBDD	$\sqrt{}$	$ \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	0 0 ? 0	$ \sqrt{} $
OBDD	$\sqrt{}$	$ \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	$\sqrt{\circ}$	$\sqrt{}$
DNF	$\sqrt{\circ}$	$\sqrt{\sqrt{\circ}}$	0 0	$\circ $
CNF				

L	CD (conditioning)	FO (forgetting) SFO (single forg.)	$\wedge {\sf C}$ (conjunction) $\wedge {\sf BC}$ (bounded conj.)	<pre>VC (disjunction) ∨BC (bounded disj.)</pre>	$\neg C$ (negation)
NNF DNNF	\bigvee_{\checkmark}	$\circ \checkmark$ $\checkmark \checkmark$	$\sqrt[]{}$	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	
BDD		• √	$\sqrt{}$	$\sqrt{}$	
FBDD		• •	• •	• •	1./
	$ v_{j}$	• •,			V, 1
OBDD	\bigvee	• √	• •	• •	$\sqrt[v]{}$
	$\sqrt[n]{}$				v ✓

 $\sqrt{}$ polytime

- $\circ \quad \text{not polytime unless } \mathsf{P} = \mathsf{N}\mathsf{P}$
- not polytime

KC for Decision

IAs 0000000 000000 0000000 SDs 0000000 Conclusion

Knowledge Compilation Map: Operations

• All online manipulations boil down to elementary queries and transformations

L	CO (consistency) VA (validity)	MX (model extr.) CE (clause entailmt.) IM (implicant check)	EQ (equivalence) SE (entailment)	CT (model count) ME (model enum.)
NNF DNNF		$\left \begin{array}{c} \circ & \circ & \circ \\ \sqrt{1} & \sqrt{2} & 0 \end{array} \right $	0 0	$\circ \circ$
BDD	0 0			0 0
FBDD	$\sqrt{}$	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	0 0 ? 0	$\sqrt{}$
OBDD	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{\sqrt{\sqrt{1}}}}$	$\sqrt{\circ}$	$\sqrt{\sqrt{1}}$
DNF	$\sqrt{\circ}$	$\sqrt{\sqrt{\circ}}$	0 0	$\circ $
CNF		0 0 1	0 0	

L	CD (conditioning)	FO (forgetting) SFO (single forg.)	∧C (conjunction) ∧BC (bounded conj.)	√C (disjunction) √BC (bounded disj.)	C (negation)
	-	H 0/		//	
NNF	√	• √	$\sqrt{}$	$\overline{\sqrt{\sqrt{\sqrt{1}}}}$	$\overline{\mathbf{V}}$
NNF DNNF	$\overline{\checkmark}$	\circ \checkmark \checkmark \checkmark	$\sqrt{}$		√ ○
NNF DNNF BDD			$\sqrt{}$		
NNF DNNF BDD FBDD		\circ \checkmark \checkmark \checkmark	$\begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & \\ \bullet & & \\ \end{array}$		
NNF DNNF BDD			$\sqrt[]{\sqrt[]{0}}$		
NNF DNNF BDD FBDD			$\begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & \\ \bullet & & \\ \end{array}$		

 $\sqrt{}$ polytime

- $\circ \quad \text{not polytime unless } \mathsf{P} = \mathsf{N}\mathsf{P}$
- not polytime

KC for Decision

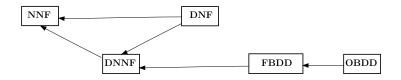
IAs 0000000 000000 0000000 SDs 0000000 Conclusion

Knowledge Compilation Map: Operations

• All online manipulations boil down to elementary queries and transformations

L	CO (consistency) VA (validity)	MX (model extr.) CE (clause entailmt.) IM (implicant check)	EQ (equivalence) SE (entailment)	CT (model count) ME (model enum.)
NNF	0 0	0 0 0	0 0	0 0
DNNF	$\sqrt{\circ}$	$\sqrt{\sqrt{\circ}}$	0 0	∘ √
BDD	0 0	0 0 0	0 0	0 0
FBDD	$\sqrt{}$	$ \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	0 0 ? 0	$ \sqrt{} $
OBDD	$\sqrt{}$	$ \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	$\sqrt{\circ}$	$\sqrt{}$
			0 0	0 1/
DNF CNF	$\sqrt{\circ}$	$ \sqrt{ \sqrt{ \circ }}$		

L	CD (conditioning)	FO (forgetting) SFO (single forg.)	$\wedge \mathbf{C}$ (conjunction) $\wedge \mathbf{BC}$ (bounded conj.)	∨C (disjunction) ∨BC (bounded disj.)	⊣C (negation)
NNF DNNF		$\circ \sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{}$		\bigvee_{\circ}
NNF DNNF BDD	\bigvee				√ ∘ √
DNNF BDD FBDD		$\sqrt{}$	$\begin{array}{c c} \sqrt{\sqrt{2}} \\ 0 & 0 \\ \sqrt{\sqrt{2}} \\ \bullet & 0 \end{array}$		
DNNF BDD FBDD OBDD		$\sqrt{}$	$\sqrt{}$	$\begin{array}{c c} \sqrt{1} & \sqrt{1} \\ \sqrt{1} & \sqrt{1} \\ \sqrt{1} & \sqrt{1} \\ \hline \sqrt{1} \\ \hline \sqrt{1} & \sqrt{1} \\ \hline \sqrt{1} & \sqrt{1} \\ \hline \sqrt{1} \\ \hline \sqrt{1} & \sqrt{1} \\ \hline \sqrt{1} \\ \hline \sqrt{1} & \sqrt{1} \\ \hline \sqrt{1} \\ \hline \sqrt{1} \\ \hline \sqrt{1} & \sqrt{1} \\ \hline \sqrt{1} $	
DNNF BDD FBDD		$\sqrt{}$	$\sqrt[]{}$		


 $\sqrt{}$ polytime

- $\circ \quad \text{not polytime unless } \mathsf{P} = \mathsf{N}\mathsf{P}$
- not polytime

IAs 0000000 0000000 SDs 0000000 Conclusion

Knowledge Compilation Map: Succinctness

• Succinctness relation: orders target languages w.r.t. their compacity

• $L_1 \longleftarrow L_2$: L_1 is strictly more succinct than L_2

Target Languages for Planning Applications?

- Many target languages can be used for our application
- \rightarrow Boolean or enumerated variables only
 - Real applications often involve continuous variables (time, energy...)

Our work

Define languages representing Boolean functions over variables with continuous or large enumerated domains.

Problem

SDs 000000 Conclusion

Outline

- Introduction to the problem
- 2 Knowledge Compilation for Decision-Making
 - Decision Policy
 - Knowledge Compilation

Interval Automata

- Structure and semantics
- Exploitation of a Policy Using IAs
- Building FIAs
- 4 Set-labeled Diagrams

5 Conclusion

KC for Decision

SDs 000000 Conclusion

Outline

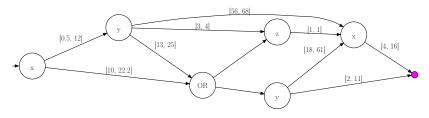
- Introduction to the problem
- Knowledge Compilation for Decision-Making
 Decision Policy
 - Knowledge Compilation

Interval Automata

- Structure and semantics
- Exploitation of a Policy Using IAs
- Building FIAs

4 Set-labeled Diagrams

5 Conclusion


SDs 0000000

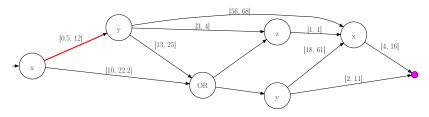
イロト イポト イヨト イヨト

Conclusion

Interval Automata

• The first language we described: interval automata (IAs).

Definition (Interval automaton)


SDs 0000000

イロト イポト イヨト イヨト

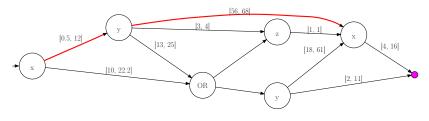
Conclusion

Interval Automata

• The first language we described: interval automata (IAs).

 $x \in [0.5, 12]$

Definition (Interval automaton)


SDs 0000000

イロト イポト イヨト イヨト

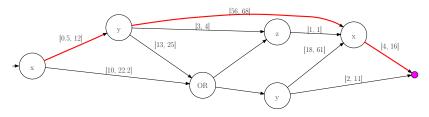
Conclusion

Interval Automata

• The first language we described: interval automata (IAs).

 $x \in [0.5, 12] \qquad \qquad \times \quad y \in [56, 68]$

Definition (Interval automaton)


SDs 0000000

イロト イポト イヨト イヨト

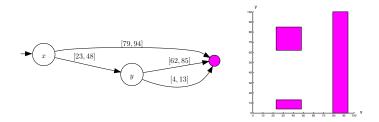
Conclusion

Interval Automata

• The first language we described: interval automata (IAs).

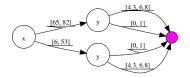
 $x \in [0.5, 12] \cap [4, 16] \quad \times \quad y \in [56, 68]$

Definition (Interval automaton)



SDs 0000000 Conclusion

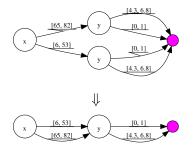
Semantics of Interval Automata


• Each interval automaton represents a Boolean function, or equivalently a set of solutions

IAs 0000000 000000 000000 SDs 0000000 Conclusion

Reduction: merging of isomorphic nodes

The size of IAs can be reduced thanks to several operations

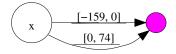

Isomorphic nodes

Two nodes N_1 , N_2 of an IA φ are isomorphic iff $Var(N_1) = Var(N_2)$ and there exists a bijection σ from $Out(N_1)$ onto $Out(N_2)$, s.t. $\forall E \in Out(N_1)$, $Lbl(E) = Lbl(\sigma(E))$ and $Dest(E) = Dest(\sigma(E))$.

IAs 0000000 000000 000000 SDs 0000000 Conclusion

Reduction: merging of isomorphic nodes

The size of IAs can be reduced thanks to several operations

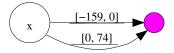

Isomorphic nodes

Two nodes N_1 , N_2 of an IA φ are isomorphic iff $Var(N_1) = Var(N_2)$ and there exists a bijection σ from $Out(N_1)$ onto $Out(N_2)$, s.t. $\forall E \in Out(N_1), Lbl(E) = Lbl(\sigma(E))$ and $Dest(E) = Dest(\sigma(E))$.

KC for Decision

IAs 00000000 0000000 SDs 0000000 Conclusion

Reduction: merging of contiguous edges


Contiguous edges


Two edges E_1 , E_2 of an IA φ are contiguous iff $Src(E_1) = Src(E_2)$, Dest $(E_1) = Dest(E_2)$ and there exists an interval $I \subseteq \mathbb{R}$ s.t. $Lbl(E_1) \cup Lbl(E_2) = I \cap Dom(Var(E_1)).$

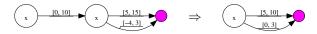
KC for Decision

IAs 0000000 000000 SDs 0000000 Conclusion

Reduction: merging of contiguous edges

Contiguous edges

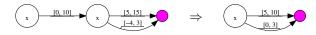
Two edges E_1 , E_2 of an IA φ are contiguous iff $Src(E_1) = Src(E_2)$, Dest $(E_1) = Dest(E_2)$ and there exists an interval $I \subseteq \mathbb{R}$ s.t. Lbl $(E_1) \cup Lbl(E_2) = I \cap Dom(Var(E_1))$.


KC for Decision

SDs 0000000 Conclusion

Reduction of an IA

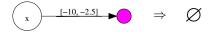
Merging of stammering nodes:



KC for Decision

IAs 0000000 000000 000000 SDs 0000000 Conclusion

Reduction of an IA


Merging of stammering nodes:

Elimination of undecisive nodes:

Elimination of unreachable edges (here $Dom(x) = \mathbb{R}_+$):

KC for Decision

IAs 0000000 000000 000000 SDs 0000000 Conclusion

Reduction of an IA

Merging of stammering nodes:

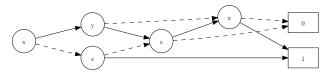
Elimination of undecisive nodes:

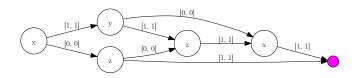
Elimination of unreachable edges (here $Dom(x) = \mathbb{R}_+$):

$$x \xrightarrow{[-10, -2.5]} \Rightarrow \emptyset$$

Theorem (Reduction of an IA)

There exists a polytime algorithm transforming any IA into an equivalent reduced IA.





SDs 0000000 Conclusion

Relation with BDD

• BDDs are particular IAs (Boolean variables, deterministic nodes).

Problem 0000000

SDs 000000 Conclusion

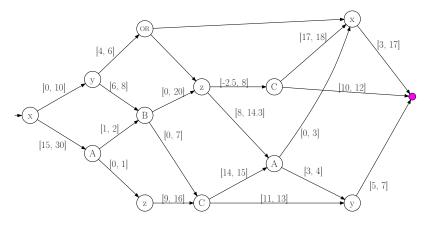
Outline

- Introduction to the problem
- 2 Knowledge Compilation for Decision-Making
 - Decision Policy
 - Knowledge Compilation

Interval Automata

- Structure and semantics
- Exploitation of a Policy Using IAs
- Building FIAs

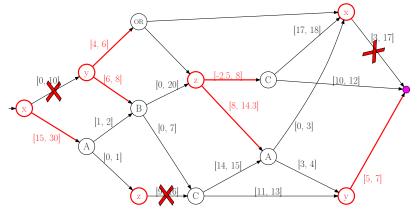
4 Set-labeled Diagrams


5 Conclusion

KC for Decision

SDs 0000000 Conclusion

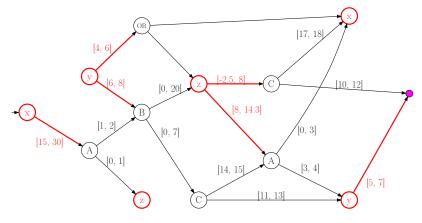
Conditioning an IA



KC for Decision

SDs 0000000 Conclusion

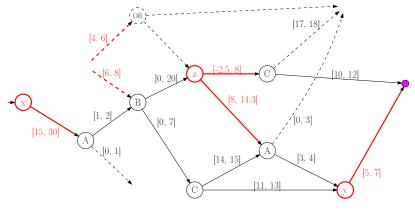
Conditioning an IA



KC for Decision

SDs 0000000 Conclusion

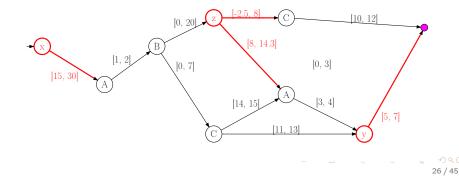
Conditioning an IA



KC for Decision

SDs 0000000 Conclusion

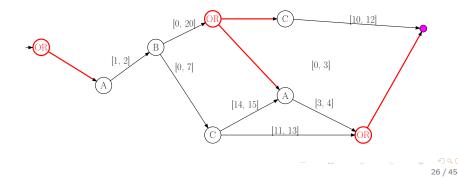
Conditioning an IA



KC for Decision

SDs 0000000 Conclusion

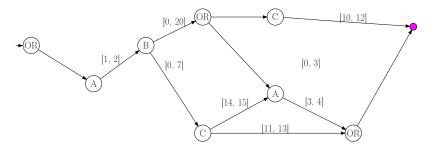
Conditioning an IA



KC for Decision

SDs 0000000 Conclusion

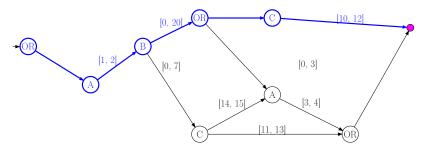
Conditioning an IA



KC for Decision

SDs 0000000 Conclusion

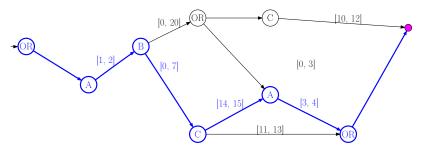
Model Extraction on an IA



KC for Decision

SDs 0000000 Conclusion

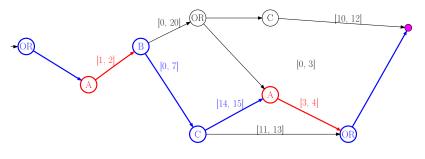
Model Extraction on an IA



KC for Decision

SDs 0000000 Conclusion

Model Extraction on an IA



KC for Decision

SDs 0000000 Conclusion

Model Extraction on an IA

SDs 0000000 Conclusion

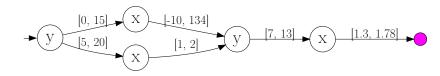
Model Extraction is Hard

• Paths in an IA can be inconsistent

Theorem

Interval automata do not support model extraction in polytime.

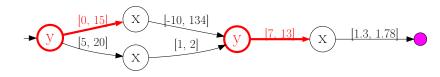
 \rightarrow we look for a restriction on IAs, making this operation easier.



SDs 0000000 Conclusion

Focusing Interval Automata

• Idea: along a path, intervals can only shrink \rightarrow focusing IAs

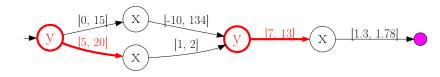

SDs 0000000

イロト イポト イヨト イヨト

Conclusion

Focusing Interval Automata

• Idea: along a path, intervals can only shrink \rightarrow focusing IAs

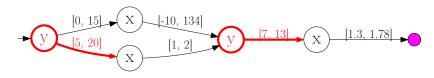

SDs 0000000

イロト イポト イヨト イヨト

Conclusion

Focusing Interval Automata

• Idea: along a path, intervals can only shrink \rightarrow focusing IAs



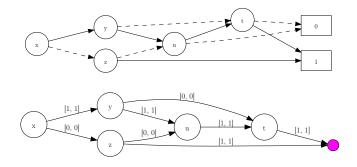
SDs 0000000 Conclusion

Focusing Interval Automata

 $\bullet\,$ Idea: along a path, intervals can only shrink $\rightarrow\,$ focusing IAs

• Each path of a reduced FIA corresponds to at least one model

Theorem


FIAs support model extraction in polytime.

SDs 0000000 Conclusion

$\mathsf{Read-once} \Rightarrow \mathsf{Focusing}$

- Parallel with the "read-once" restriction on BDDs
- Read-once BDDs (FBDDs and OBDDs) are particular FIAs.

Problem

SDs 000000 Conclusion

Outline

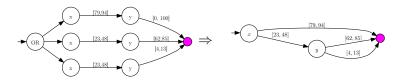
- Introduction to the problem
- 2 Knowledge Compilation for Decision-Making
 - Decision Policy
 - Knowledge Compilation

Interval Automata

- Structure and semantics
- Exploitation of a Policy Using IAs
- Building FIAs
- 4 Set-labeled Diagrams

5 Conclusion

SDs 0000000 Conclusion

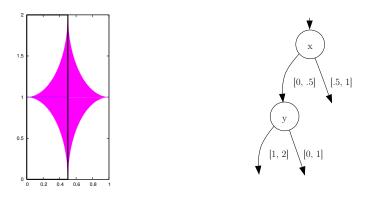

Compiling List of Boxes

- Compilation of decision policies, obtained with an external algorithm:
 list of "boxes" → FIA
 - Build the FIA representing each "box"

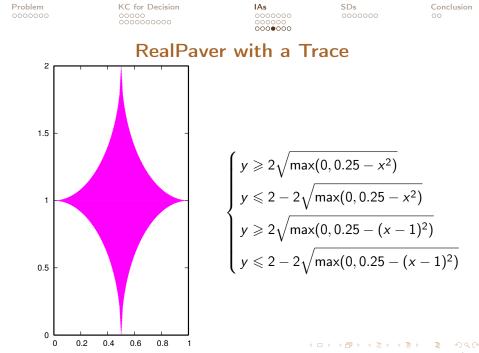
 $[0,1]\times[8.7,34.5]\times[11,43]\times[1,1.2]$

• Make the disjunction of the boxes (\lor C easy on FIAs)

KC for Decision


IAs 000000 000000 000000 SDs 0000000 Conclusion

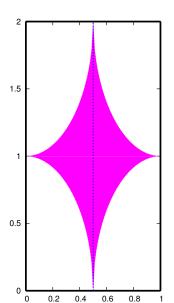
Compiling Continuous Constraint Networks


• Compilation of transition relations:

continuous constraint networks $\longmapsto \mathsf{FIA}$

• Following the "DPLL with a trace" approach: use the trace of the interval-based CSP solver RealPaver

୬ ୯ ୯ 32 / 45

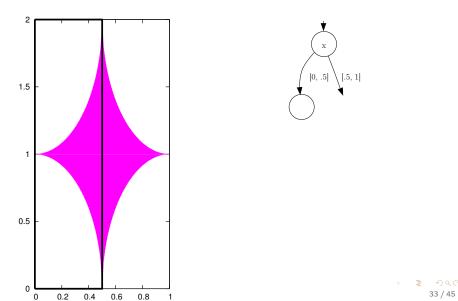


33 / 45

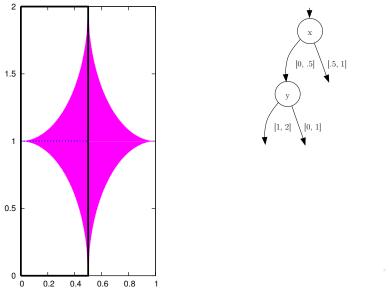
KC for Decision

IAs 0000000 00000000 SDs 0000000 Conclusion

RealPaver with a Trace

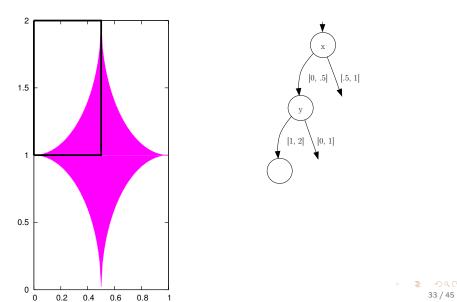


> ≣ ∽ < (~ 33 / 45

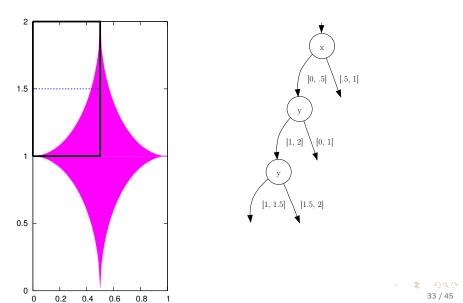

IAs 0000000 00000000 SDs 0000000 Conclusion

IAs 0000000 00000000 SDs 0000000 Conclusion

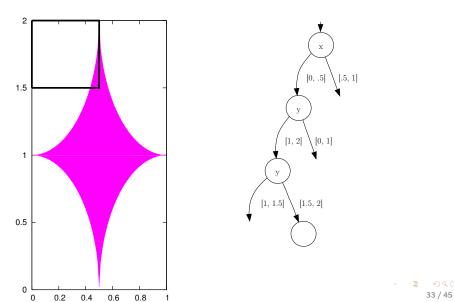
RealPaver with a Trace

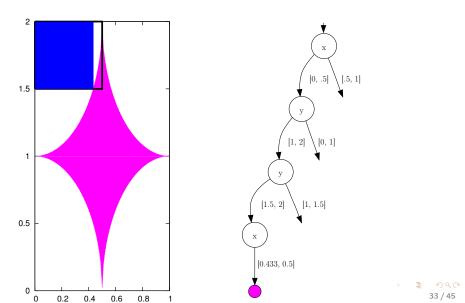


≣ •େ ९ ୯ 33 / 45

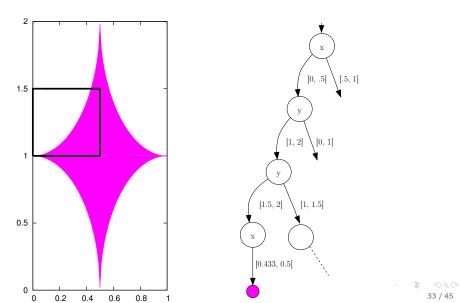

IAs

SDs 0000000 Conclusion

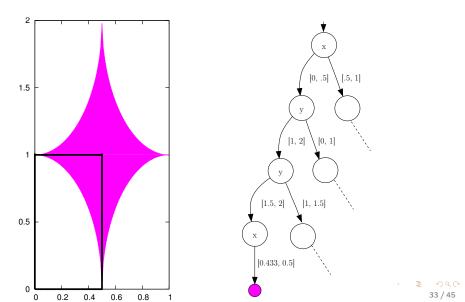

IAs 0000000 00000000 SDs 0000000 Conclusion


IAs

SDs 0000000 Conclusion


KC for Decision

IAs 0000000 00000000 SDs 0000000 Conclusion


KC for Decision

IAs 0000000 00000000 SDs 0000000 Conclusion

KC for Decision

IAs 0000000 000000000 SDs 0000000 Conclusion

SDs 0000000 Conclusion

Implementation

- Prototype of "RealPaver with a trace"
- Toolbox for manipulating IAs/FIAs (CO, MX, CD, FO, \land C, ...)
- Experimenting exploitation of a transition table

problem	#edges	CDFOMX	CDMX	RealPaver
Drone4-5-3	61 596	< 1 ms	1 ms	23 ms
Drone4-10-3	81 290	< 1 ms	$< 1 \ {\rm ms}$	21 ms
Drone4-15-3	269 913	1 ms	1 ms	25 ms
Drone4-20-3	350 818	1 ms	1 ms	25 ms
Drone4-25-3	354 772	3 ms	3 ms	28 ms

 \rightarrow compatible with an online use

KC for Decision

IAs

SDs 0000000 Conclusion

Knowledge Compilation Map of IAs and FIAs

Query	IA	FIA	DNNF
C 0	0	\checkmark	
VA	0	0	0
MC		\checkmark	\checkmark
CE	0	\checkmark	
IM	0	0	0
EQ	0	0	0
SE	0	0	0
MX	0	\checkmark	
CX	0	\checkmark	$$
СТ	0	0	0
ME	0	\checkmark	\checkmark

Transfo.	IA	FIA	DNNF
CD		\checkmark	\checkmark
TR	0	\checkmark	
FO	0	\checkmark	\checkmark
SFO		\checkmark	
EN	0	0	0
SEN		0	0
∨C		\checkmark	\checkmark
∨BC		\checkmark	$$
∨clC		\checkmark	
$\wedge \mathbf{C}$		0	0
∧BC		0	0
∧tC			$$

- $\sqrt{}$ polytime
- $\circ \quad \text{not polytime unless } \mathsf{P} = \mathsf{N}\mathsf{P}$
- not polytime < ≥ > < ≥ > ≥ ⊘ <

35 / 45

IAs

SDs 0000000 Conclusion

Back to Enumerated Variables

• Focusing IAs are not decomposable

• Yet the operations they support are similar to DNNF

 $\rightarrow\,$ We study how we can apply focusingness to languages on discrete variables

KC for Decision

IAs 0000000 0000000 **SDs**

Conclusion

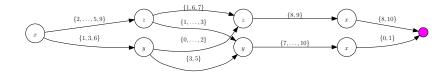
Outline

- Introduction to the problem
- 2 Knowledge Compilation for Decision-Making
 - Decision Policy
 - Knowledge Compilation

3 Interval Automata

- Structure and semantics
- Exploitation of a Policy Using IAs
- Building FIAs

5 Conclusion



SDs 0000000 Conclusion

Set-labeled Diagrams

• We described a discrete counterpart to IAs: set-labeled diagrams (SDs)

• Edges of IAs labeled by intervals of real numbers \rightarrow Edges of SDs labeled by sets of integers

SDs ○●○○○○○ Conclusion

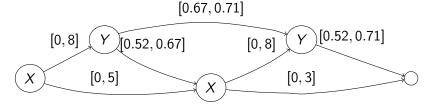
The SD Family

- We considered a number of sublanguages of SDs, based on the following properties:
 - focusingness
 - $\rightarrow \mathsf{FSDs}$
 - exclusive decision: imposes sets of sister edges to be disjoint
 - ightarrow SDDs (set-labeled decision diagrams), FSDDs
 - fixed order on variables
 - \rightarrow OSDs and OSDDs

IAs 0000000 000000 0000000 SDs 00●0000 Conclusion

Relationship with Other Languages

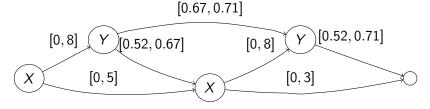
• MDDs are particular OSDDs (all sets are singletons)



IAs 0000000 000000 0000000 SDs 00●0000 Conclusion

Relationship with Other Languages

- MDDs are particular OSDDs (all sets are singletons)
- FIAs can be "further compiled" into FSDs: judicious discretization

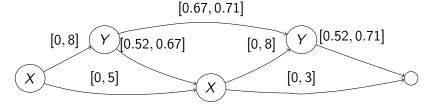


IAs 0000000 000000 0000000 SDs 00●0000 Conclusion

Relationship with Other Languages

- MDDs are particular OSDDs (all sets are singletons)
- FIAs can be "further compiled" into FSDs: judicious discretization

 $\big\{[0,3], \qquad \]3,5], \qquad \]5,8], \qquad \]8,10] \big\}$

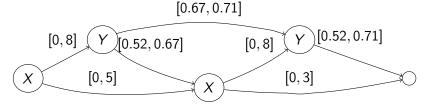

 $\left\{ [0, 0.52[, [0.52, 0.67[, \{0.67\},]0.67, 0.71]]0.71, 1] \right\}$

IAs 0000000 000000 0000000 SDs 00●0000 Conclusion

Relationship with Other Languages

- MDDs are particular OSDDs (all sets are singletons)
- FIAs can be "further compiled" into FSDs: judicious discretization

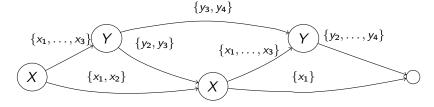
 $\begin{cases} [0,3], &]3,5], &]5,8], &]8,10] \\ \{x_1, & x_2, & x_3, & x_4 \end{cases}$


 $\left\{ [0, 0.52[, \quad [0.52, 0.67[, \quad \{0.67\}, \quad]0.67, 0.71] \quad]0.71, 1] \quad \right\}$

IAs 0000000 000000 0000000 SDs 00●0000 Conclusion

Relationship with Other Languages

- MDDs are particular OSDDs (all sets are singletons)
- FIAs can be "further compiled" into FSDs: judicious discretization


 $\left\{ \begin{bmatrix} 0, 0.52 \end{bmatrix}, \begin{bmatrix} 0.52, 0.67 \end{bmatrix}, \{0.67\}, \begin{bmatrix} 0.67, 0.71 \end{bmatrix}, \begin{bmatrix} 0.71, 1 \end{bmatrix} \right\}$ $\left\{ \begin{array}{ccc} y_1, & y_2, & y_3, & y_4, & y_4, & y_5 \end{bmatrix}, \begin{array}{ccc} y_5 & y_5 \end{bmatrix}, \begin{array}{ccc} y_5 & y_5 \end{bmatrix}$

IAs 0000000 000000 0000000 SDs 00●0000 Conclusion

Relationship with Other Languages

- MDDs are particular OSDDs (all sets are singletons)
- FIAs can be "further compiled" into FSDs: judicious discretization

 $\left\{ \begin{bmatrix} 0, 0.52 \end{bmatrix}, \begin{bmatrix} 0.52, 0.67 \end{bmatrix}, \begin{bmatrix} 0.67 \end{bmatrix}, \begin{bmatrix} 0.67 \end{bmatrix}, \begin{bmatrix} 0.67, 0.71 \end{bmatrix} \begin{bmatrix} 0.71, 1 \end{bmatrix} \right\}$

SDs 000●000 Conclusion

KC Map of the SD Family: Queries

Query	SD	SDD	FSD	FSDD	OSD	OSDD	OSD<	$OSDD_{<}$	DNNF
CO	0	0			\checkmark		\checkmark		
VA	0	0	0	\checkmark	0		0		0
MC					\checkmark		\checkmark		
CE	0	0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
IM	0	0	0	\checkmark	0		0	\checkmark	0
EQ	0	0	0	?	0		0		0
SE	0	0	0	0	0	0	0	\checkmark	0
MX	0	0	\checkmark		\checkmark				
СХ	0	0		\checkmark	\checkmark	\checkmark		\checkmark	
СТ	0	0	0	?	0		0		0
ME	0	0	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark

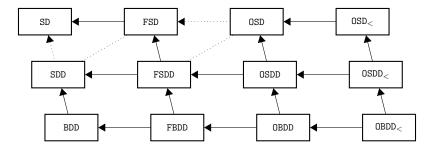
- $\sqrt{}$ polytime
 - $\circ \quad \text{not polytime unless } \mathsf{P} = \mathsf{N}\mathsf{P}$
 - not polytime

IAs 0000000 000000 0000000 SDs 0000●00 Conclusion

KC Map of the SD Family: Transformations

Transfo.	SD	SDD	FSD	FSDD	OSD	OSDD	OSD<	$OSDD_{<}$	DNNF
CD									
TR	0	0		0	\checkmark	•	\checkmark	•	$$
FO	0	0	\checkmark	0	\checkmark	٠	\checkmark	•	
SFO		\checkmark		0	\checkmark	•	\checkmark	•	$$
EN	0	0	0	0	0	٠	0	•	0
SEN		\checkmark	0	0	0	٠	0	•	0
∨C				0	?	٠		•	
∨BC		\checkmark		0	?	0	\checkmark	\checkmark	
∨clC		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$$
∧C			0	0	0	٠	0	•	0
∧BC		\checkmark	0	0	0	0	\checkmark	\checkmark	0
∧tC			$$		\checkmark		\checkmark	\checkmark	$$
−C	?		0	?	0		0	\checkmark	0

- $\sqrt{}$ polytime
- $\circ \quad \text{not polytime unless } \mathsf{P} = \mathsf{N}\mathsf{P}$
- not polytime
 □ → < □ → < ≡ → < ≡ →


√) Q (?
41 / 45

э

IAs 0000000 000000 0000000 SDs 00000●0 Conclusion

KC Map of the SD Family: Succinctness

 $\bullet \ L_1 \longleftarrow L_2 : \quad \ L_1 \text{ is strictly more succinct than } L_2$

• $L_1 \leftarrow -L_2$: unknown relationship

Problem
0000000

Conclusion

Choco with a Trace

- To compile discrete CSPs into FSDDs: "Choco with a trace"
- $\bullet\,$ Different settings of Choco $\rightarrow\,$ different sublanguages
 - ${\scriptstyle \bullet}\,$ if variables are examined in fixed order \rightarrow OSDDs
 - to get "pure" FSDDs, we can design heuristics for dynamic variable choice

KC for Decision

IAs 0000000 0000000 SDs 000000 Conclusion

Outline

- Introduction to the problem
- 2 Knowledge Compilation for Decision-Making
 - Decision Policy
 - Knowledge Compilation

3 Interval Automata

- Structure and semantics
- Exploitation of a Policy Using IAs
- Building FIAs

4 Set-labeled Diagrams

5 Conclusion

SDs 0000000 Conclusion • 0

Contributions

- Definition of interval automata and set-labeled diagrams
- Identification of the focusingness property
- KC map of IAs and FIAs / of the SD family
- "RealPaver/Choco with a trace" algorithms
- Implementation (compilers and toolboxes)

SDs 000000 Conclusion

Perspectives

- Approximate compilation
- AND-nodes
- compilation modulo theory: more expressive literals $x \in [1,4] \longrightarrow x-y < 3$
- Other data structures as compiled forms: R*-trees, hashtables. . .
- Study comparison of languages w.r.t. a representation change