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Abstract

Controlling autonomous systems requires to make decisions depending on cur-
rent observations and objectives. This involves some tasks that must be executed
online—with the embedded computational power only. However, these tasks are
generally combinatory; their computation is long and requires a lot of memory
space. Entirely executing them online thus compromises the system’s reactivity.
But entirely executing them offline, by anticipating every possible situation, can
lead to a result too large to be embedded. A tradeoff can be provided by knowledge
compilation techniques, which shift as much as possible of the computational effort
before the system’s launching. These techniques consists in a translation of a prob-
lem into some language, obtaining a compiled form of the problem, which is both
easy to solve and as compact as possible. The translation step can be very long,
but it is only executed once, and offline. There are numerous target compilation
languages, among which the language of binary decision diagrams (BDDs), which
have been successfully used in various domains of artificial intelligence, such as
model-checking, configuration, or planning.

The objective of the thesis was to study how knowledge compilation could be
applied to the control of autonomous systems. We focused on realistic planning
problems, which often involve variables with continuous domains or large enumer-
ated domains (such as time or memory space). We oriented our work towards the
search for target compilation languages expressive enough to represent such prob-
lems.

In a first part of the thesis, we present various aspects of knowledge compi-
lation, as well as a state of the art of the application of compilation to planning.
In a second part, we extend the BDD framework to real and enumerated variables,
defining the interval automata (IAs) target language. We draw the compilation map
of IAs and of some restrictions of IAs, that is, their succinctness properties and their
efficiency with respect to elementary operations. We describe methods for compil-
ing into IAs problems that are represented as continuous constraint networks. In
a third part, we define the target language of set-labeled diagrams (SDs), another
generalization of BDDs allowing the representation of discretized IAs. We draw
the compilation map of SDs and of some restrictions of SDs, and describe a method
for compiling into SDs problems expressed as discrete continuous networks. We
experimentally show that using IAs and SDs for controlling autonomous systems
is promising.
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Introduction

A system (vehicle, instrument) is autonomous if it is not controlled by a human
operator. Its actions are driven by an inner program, which is not modified while
the system is working; the program is embedded into the system, and allows it to
“make decisions” all by itself. Embedded systems are generally subject to a lot of
limitations (such as price, weight, or power) that depend on the specific task they
have to handle. As a consequence, embedded systems do not have many resources
at their disposal, in terms of memory space and computational power available
onboard. However, they generally require high reactivity. These constraints are
even more significant when dealing with embedded systems controlling aeronau-
tical and spatial autonomous systems, such as drones or satellites: their resources
can be severely limited, and lack of reactivity can be a crucial issue.

Decision-making is one of the targets of an artificial intelligence field, namely
planning. To produce decisions fitting the situation, the program has to solve a
planning problem. Tools have been designed in order to solve such problems; using
these tools, the system can compute suitable decisions to make. However, in the
general case, planning problems are hard to solve—they have a high computational
complexity. The basic consequence of this fact is that making decisions by solving
planning problems takes time, especially on autonomous systems, that have limited
computational power. Reactivity is thus not ensured if the problem is solved online,
i.e., each time it is needed, using only the system’s power and memory.

To settle this issue, one possibility is to compute decisions offline, that is, before
the system is set up. Anticipating all possible situations, and solving the problem
for each of them, we could provide the system with a decision table, containing a set
of “decision rules” of the form “in this situation, make that decision”. This would
guarantee a maximal reactivity for the system, since using such a table online does
not require a high computational power.

However, this enhancement in reactivity may imply an important increase in
memory space. Indeed, decision-making depends on lots of parameters, includ-
ing for instance measurements, current (supposed) position, state of components,
current data, current objectives, and even some former values of these parameters.
This leads to a huge number of possible situations, and thus to a huge number of
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decision rules in the decision table, whereas the memory space available online is
drastically limited.

We see that a compromise is necessary between reactivity and spatial compact-
ness. Knowledge compilation is a way of achieving such a compromise: the objec-
tive of this discipline is to study how one can translate a problem offline, to facil-
itate its online resolution. It examines to what extent target languages, into which
problems can be compiled, allow online requests to be tractable, while keeping the
representation as compact as possible. Using knowledge compilation amounts to
shifting as much computational effort as possible before the system’s setting up,
thus obtaining good reactivity, while deteriorating space efficiency as little as pos-
sible.

Knowledge compilation techniques have proven useful for various applications,
including planning. The goal of this thesis was to study how it is possible to advan-
tageously apply these techniques to real planning problems related to aeronautical
and spatial autonomous systems. We considered a number of real problems, and
remarked in particular that the target languages used in state-of-the-art planners are
not specifically designed to handle some aspects of our problems, namely continu-
ous domains. We oriented our work towards the application of these state-of-the-art
techniques to other (possibly new), more expressive target languages.

This thesis is divided into three parts. The first one develops the context of the
work, detailing knowledge compilation [Chapter 1] and planning [Chapter 2]. It
explains [Chapter 3] why we felt that our subject raised the need for new target
compilation languages. The second part deals with interval automata, one of the
new languages we defined. It presents some theoretical aspects of this language
[Chapter 4], details how we can build elements of this language in practice [Chap-
ter 5], and provides experimental results [Chapter 6]. The third part is about an-
other language we defined, set-labeled diagrams. Using a similar outline to that of
Part II, it begins with definitions and general properties about the language [Chap-
ter 7], presents our compilation algorithm [Chapter 8], and ends with experimental
results [Chapter 9].
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CHAPTER

1

Knowledge Compilation

This chapter details the main topic of this work, namely knowledge compilation.
In a nutshell, knowledge compilation consists in transforming a problem offline, in
order to facilitate its online resolution. This transformation is actually considered
as a translation from the original language in which the problem is described, into a
target language that has good properties, to wit, allowing the problem to be solved
“easily” while remaining as compact as possible.

After having presented and illustrated the basic idea and concepts of knowledge
compilation [§ 1.1], we formally define notions pertaining to languages [§ 1.2]. A
number of state-of-the-art languages are then defined [§ 1.3]; they belong to the
particular class of graph-based Boolean languages, on which we focused during the
thesis. The next section details some properties of this class, and provides theoreti-
cal results from the literature [§ 1.4]. We then give some insight about non-Boolean
languages [§ 1.5]. The last two sections of the chapter are dedicated to practical as-
pects of knowledge compilation [§ 1.6] and successful applications [§ 1.7].

1.1 Presentation

1.1.1 Concepts and History
Knowledge compilation can be seen as a form of “factorization”, since the offline
phase is dedicated to executing computations that are both hard and common to
several online operations. This idea is not new, as illustrated by the example
of tables of logarithms [Mar08]. These tables were used to facilitate hand-made
calculations, at a time when calculators were not as small and cheap as today.
They contain couples ⟨x, log10(x)⟩, for a lot of different real values of x; these
couples could then be used to make complex calculations, such as root extrac-
tion. For example, calculating 9

√
876 by hand is long and hard work. Now, since
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9
√
876 = (8.76 × 102)1/9, it holds that log10(

9
√
876) = log10((8.76 × 102)1/9) =

(log10(8.76) + 2)/9. The user willing to get an approximate value of 9
√
876 only

has to look up the value of log10(8.76) ≈ 0.942504106 in the table, compute the
fraction (0.942504106 + 2)/9 = 0.326944901 (which is easy to do by hand), and
look up the antecedent of 0.326944901 by log10 in the table. The user then obtains
that 9

√
876 ≈ 2.122975103, having used only simple operations.

This example fits the definition of knowledge compilation, even if the context
is a bit different (knowledge compilation is not used to facilitate handmade calcula-
tions). Indeed, the offline phase consists in calculating logarithms, which are hard
to obtain and potentially useful for several online operations. Each entry can then
be used in many different cases (the value of log10(8.76) can be used to compute
the roots of 876, 87.6, 8.76…), and for each case, the work left to the user is easy.

Let us take an example closer to our subject. In the introduction, the first solu-
tion we proposed to tackle the question of autonomous systems’ reactivity was to
solve the problem beforehand for all possible situations, providing the program with
a table of decision rules. Albeit naive, this solution actually relies on knowledge
compilation. We can identify the three main points of the definition: the offline
phase proceeds with computations that are hard (solving the planning problem for
multiple initial situations) and repeated over time (a given situation can be met mul-
tiple times; the suitable decision is computed once and for all), and the online phase
left to the system is simple (look up in the table the next decision to make).

What is usually (and historically) designated as compilation is the translation
of a program, from a high-level programming language, easily understandable and
modifiable by human beings, to a low-level machine language, much more efficient
from a computational point of view. This is also a case of pre-processing, in which
we transform something offline to facilitate its online use. The specific knowledge
compilation domain differs from the general study of pre-processing in two ways.

First, following Marquis [Mar08], the name “knowledge compilation” tauto-
logically limits it to “compilation of knowledge”: it deals with the translation of
knowledge bases (that is, a set of pieces of information, generally represented as
logic formulæ) and with the exploitation of this knowledge, i.e., automated rea-
soning. The definition remains quite general—lots of things can be understood as
“pieces of information”—but typically excludes the classical program compilation
from the scope of knowledge compilation.

The second difference between standard compilation and knowledge compila-
tion is a consequence of the previous one [CD97]. Being linked to knowledge rep-
resentation and reasoning, knowledge compilation inevitably stumbles upon prob-
lems considered hard with respect to computational complexity theory [see Pap94
for an overview], for example, NP-complete problems, Σp2-complete problems, or
even PSPACE-complete problems—all widely conjectured to not be solvable in
polynomial time. The goal of researchers in knowledge compilation is not just to
make a problem simpler, but to make it drastically simpler, by changing its com-
plexity class to a more tractable one, for example from NP-complete to P, from
PSPACE-complete to NP, etc.
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In Chapter 2, we show how solving a planning problem amounts to applying
some operations on some functions. Our application, controlling autonomous sys-
tems, requires a minimal online complexity; this is why we focused on the possible
ways to achieve polynomial complexity for the online operations. This removes
from our study a number of representations, on which polytime reasoning is not
possible [e.g., the high-level logics listed in GK+95]. We basically limit ourselves
to graph-based structures.

Research has been made to decide whether knowledge compilation is useful
to some given reasoning problem. Roughly speaking, a problem P is considered
compilable into a complexity class C if and only if there exists a compilation func-
tion transforming P into another problem P ′, such that P ′ is of size polynomial
in the size of P , and P ′ is in class C. In other words, the compilation step may
be really hard—there is no restriction on the time complexity of the compilation
function—but the compiled form can take only polynomially more space than the
original problem. Compilability has been formalized by Cadoli et al. [CD+96, for
an extended review see CD+00].

Since we want our operations to be of polynomial complexity, it would seem
that we are only interested in problems compilable into P, the complexity class of
polytime problems. However, it has been proven by Liberatore [Lib98] that plan-
ning (in its classical form [§ 2.1.3.3]) is not compilable into P. Trying to compile
planning problems can nevertheless be useful for several reasons. First, this non-
compilability result means that there can be no polysize compilation function trans-
forming any planning problem into a tractable one; the compilation function must
be common to all problems. It does not imply that a specific planning problem,
when taken apart from the others, cannot be transformed into a tractable one. Sec-
ond, the compilability framework only takes worst-case complexity into account—
it does not say anything about average or practical space complexity. Last, studying
the compilation of subparts of planning problems could be worthwhile anyway.

Before moving on to a practical example of a target compilation language, let
us also specify that this work only concerns knowledge compilation in the context
of classical propositional inference; we did not study its application to the non-
classical inference relations designed for reasoning under inconsistency. We will
thus not consider stratified or weighted belief bases, though there exists some liter-
ature regarding their compilation [BYD07, DM04].

1.1.2 Example of a Target Language: OBDDs
Compiling a problem is modifying its form (this modification being potentially
hard to do), so that the problem in its compiled form is tractable, yet as compact
as possible. This can be seen as a translation from an input language into a target
language. We give a formal definition of a “language” in the next section [§ 1.2];
before that, let us illustrate what it can look like and how it is generally handled,
using the influential language of ordered binary decision diagrams, better known
as OBDDs.
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Figure 1.1: An example of a BDD. Solid (resp. dashed) edges are ⊤-labeled ones
(resp. ⊥-labeled ones).

Binary Decision Diagrams
Introduced by Lee [Lee59] and Akers [Ake78], binary decision diagrams (BDDs)
are rooted directed acyclic graphs that represent Boolean functions of Boolean
variables. They have exactly two leaves, respectively labeled ⊤ (“true”) and ⊥
(“false”); their non-leaf nodes are labeled by a Boolean variable and have exactly
two outgoing edges, also respectively labeled⊤ and⊥. Figure 1.1 gives an example
of a BDD.

A BDD represents a function, in the sense that it associates a unique Boolean
value with each assignment of the variables it mentions. Let us illustrate this on
the simple example of Figure 1.1. Four variables are mentioned; each one of them
can take two values. If we choose one value for each variable, for example x =
⊤, y = ⊥, z = ⊤, and t = ⊥, we get an assignment of these four variables,
among the 24 = 16 possible ones. How does the BDD associate a truth value
with this assignment? To get the result, one simply has to start from the root, and
follow a path to one of the leaves. The path is completely determined by the chosen
assignment: to each node corresponds a variable, the next edge to cross being the
one being labeled by the value assigned to this variable. The path ends up either at
the ⊤-leaf or at the ⊥-leaf: the label is the value that the function associates with
the chosen assignment.

The name “binary decision diagram” faithfully transcribes this behavior: start-
ing from the root, each node corresponds to a possible decision—“which value do I
choose for this variable?”—directing users to the subgraph fitting their choice—“if
you decide this, go here, else go there”. Note that each possible assignment corre-
sponds to exactly one path; BDDs thus represent functions (and not relations).

The “Decision Diagram” Family
By imposing structural restrictions on BDDs, we obtain interesting sublanguages.
For example, a free BDD (FBDD) [GM94] is a BDD that satisfies the read-once
property: each path contains at most one occurrence of each variable. But the most
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Figure 1.2: An FBDD (top) and an OBDD (bottom), both representing the same
function as the BDD of Figure 1.1.
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Figure 1.3: An example of an MDD, over variables u, v, andw, of domain {1, 2, 3}.

influential kind of BDD is the ordered BDD (OBDD) [Bry86], in which the order
of variables is imposed to be the same in every path. Figure 1.2 shows an FBDD
and an OBDD representing the same function as the BDD in Figure 1.1.

The concept of “decision diagram” is not inherently related to Boolean values;
the idea has been extended to non-Boolean variables, yieldingmulti-valued decision
diagrams (MDDs) [§ 1.3.6], and also to non-Boolean functions, yielding algebraic
decision diagrams (ADDs) [§ 1.5.1]. Figure 1.3 gives an example of an MDD.

OBDDs Are Compact and Efficient
We showed what OBDDs are, and how they work; but why are they interesting
as a knowledge compilation language? There are two simple informal reasons
to this: they are efficient, and they are small. Of course, these two aspects are
not dissociable. OBDDs are not the smallest possible representation of a function:
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Figure 1.4: Illustration of the reduction procedure on binary decision diagrams.
The BDD on the left represents formula (x ∧ ¬y) ∨ (¬x ∧ ¬y). The reduction
procedure merges the two y-nodes, which are isomorphic (they represent the same
function); the result is the BDD in the middle. Then the x-node is removed, because
it is redundant: the value of x does not matter. The reduced BDD is on the right.

propositional formulæ are generally smaller. Neither are OBDDs the most efficient
representations for all applications: computing the conjunction of several functions
is easier using truth tables, for example. What is advantageous with OBDDs is that
they are both efficient and small—they are a good compromise between efficiency
and size.

What makes OBDDs so small? The answer lies in their graph structure, that
allows factorization of “identical” subgraphs, i.e., subgraphs representing the same
function—they are said to be isomorphic. This factorization can be done thanks
to a polytime reduction procedure, described by Bryant [Bry86], and illustrated in
Figure 1.4. Not only does this reduction procedure allow exponential gains in space
for some cases, but it is also the key to the efficiency of OBDDs. The polynomiality
of the reduction procedure is important; it indeed makes it possible to always work
on reduced OBDDs. In the following, we always implicitly consider OBDDs to be
reduced.

The efficiency of OBDDs is considered with respect to their performances on
common, useful operations. Checking whether there exists an assignment satisfy-
ing a propositional formula is hard, yet it can be done in constant time if the for-
mula is represented as a reduced OBDD (the only OBDDs that have no satisfying
assignment are those that can be reduced to the ⊥-leaf). More importantly, check-
ing whether two OBDDs using the same order of variables represent the exact same
function can be done in time linear in the sum of the two OBDDs’ sizes. Moreover,
building an OBDD representing the conjunction (or disjunction, or application of
any Boolean operator) of two OBDDs using the same variable ordering is only lin-
ear in the product of the sizes of the two OBDDs. These remarkable properties of
OBDDs were discovered by Bryant [Bry86].

They are not the only language having such interesting properties: all the op-
erations described have for example a linear worst-case complexity on truth ta-
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bles. However, OBDDs have these properties while being potentially exponentially
smaller than truth tables. Indeed, the memory size necessary to store a truth table
is proportional to the number of satisfying assignments of the represented formula,
whereas it is not the case for OBDDs.

OBDDs: The Best Language?

Being such a good compromise between spatial and operational efficiency, OBDDs
have been widely used for multiple applications over the years. Does this mean
they are the best structures to compile Boolean functions? The answer is generally
no, because it depends on the target application. When one needs to often check
whether two functions are equivalent, and often compute conjunctions, OBDDs are
probably the best choice; but if the equivalence-checking test is superfluous, and
all one needs is a model-checking test, the less constrained BDDs are much better,
since they can take exponentially less memory space.

***

Choosing a language for one’s application is thus an important conception step,
that must not be neglected, for a bad choice can lead to great loss in time or space
performances—this is particularly crucial in the case of embedded systems. This
is rendered difficult by the fact that there exists a lot of target languages, especially
in the family of structures representing Boolean functions of Boolean variables. A
user thus needs tools to compare languages and make a good choice. Introduced
by Darwiche and Marquis [DM02], the knowledge compilation map provides such
tools; we present them in the following section.

1.2 A Framework for Language Cartography

The goal of the knowledge compilation map is to compare languages according to
their spatial complexity and their efficiency (in terms of worst-case complexity) for
different possible operations, such as querying some information on the compiled
form, or applying transformations. The map makes it easy to compare fragments
from a theoretical complexity point of view, retaining only the best ones for a given
application.

The purpose of this section is to present the knowledge compilation map frame-
work. We formally define the notion of language, and present the concepts that are
used to compare languages—but prior to this, let us introduce our notation con-
ventions. Note that an index of symbols is available at the very end of this thesis
[p. 237].
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1.2.1 Notation
We denote as R the set of real numbers, as Z the set of integers, as N the set of
natural numbers (including 0), asN∗ the set of positive integers (excluding 0), and
asB the set of Boolean constants. We use ⊤ and ⊥ to refer to the Boolean constants
“true” and “false” respectively, but often implicitly identify B with {0, 1}, so that
the following inclusions hold:

B ⊆ N ⊆ Z ⊆ R.

We use SA to denote the set of singletons of a set A. Thus, for example, SB ={
{⊤}, {⊥}

}
, and SN =

∪
n∈N

{
{n}

}
.

For the sake of generalization, the variables we consider can have any kind of
domain—discrete or continuous, finite or infinite…as long as it is not empty. We
call V the set of all possible variables; V is of course non-empty, and we assume
that it is ordered by some total strict order <V . When considering a set of sub-
scripted variables, such as {x1, x2, . . . , xk}, it will always be implicitly supposed
that x1 <V x2 <V . . . <V xk.

For x ∈ V , we denote by Dom(x) its domain, which, from a general point of
view, can be any non-empty set. Nevertheless, we often need to consider variables
defined on specific domains: given a set S, we define VS = {x ∈ V | Dom(x) =
S }. Important classes of variables include B, the set of Boolean variables (sim-
ply defined as VB), and E , the set of enumerated variables, that we arbitrarily
define as the set of all variables with a finite integer interval domain (formally,
E =

∪
(a,n)∈Z×N V{a,a+1,...,a+n}).

For X = {x1, . . . , xk} ⊆ V , Dom(X) denotes the set of assignments of vari-
ables from X (or X-assignments), that is, Dom(X) = Dom(x1) × Dom(x2) ×
· · · × Dom(xk). We denote as #—x an X-assignment, i.e., #—x ∈ Dom(X). Set X is
called the support of #—x . The empty set can have only one assignment, denoted #—∅.

Let X,Y ⊆ V , and let #—x be an X-assignment. The restriction of #—x to the
variables of Y , denoted #—x |Y , is theX ∩Y -assignment in which each variable takes
the same value as in #—x . Note that this definition allows Y to be disjoint fromX (in
which case #—x |Y is always equal to #—∅). For a given variable xi ∈ X , #—x |{xi} thus
gives the value taken by xi in #—x ; we simply denote it by #—x |xi .

LetX,Y ⊆ V , and let #—x and #—y be someX- and Y -assignments. IfX and Y are
disjoint, #—x . #—y denotes the concatenation of the two assignments, i.e. the X ∪ Y -
assignment that coincides with #—x on variables from X and with #—y on variables
from Y .

Given S and E some sets, we use the notation ES to designate the set of all
functions of the form f : S → E; S is called the input set of f , and E its valuation
set. The restriction of f to a set S′, denoted f|S′ , is the function from S ∩ S′ to
E which coincides with f on S ∩ S′. We generally consider functions verifying
S = Dom(V ), with V ⊆ V some set of variables. We call them functions over the
variables from V to the set E. For such a function f : Dom(V ) → E, V is called
the scope of f , and is denoted Scope(f). Note that we authorize functions to take

12



1.2 A Framework for Language Cartography

as input assignments the support of which is larger than the scope of the function:
it will always be implicitly considered that f( #—v ) means f( #—v | Scope(f)).

1.2.2 Representation Language

Let us now introduce the basic elements of the map. At the highest level of abstrac-
tion, these elements are called representation languages, and have been formalized
in the propositional case by Fargier and Marquis [FM09]. We extend their definition
here so that it captures all languages presented thereafter.1

What Is Expressed: Interpretation Domain
Generally speaking, knowledge compilation languages represent functions. These
functions are of various kinds: some languages are used to handle Boolean func-
tions, some others to handle real-valued functions; some hold on Boolean variables,
some others on enumerated variables. We say that they have different interpretation
domains—an interpretation domain being the set of functions that are admissible
in the language.
Definition 1.2.1 (Interpretation domain). Let V ⊆ V be a finite set of variables, and
E any set. The interpretation domain associated with V and E is the set

DV,E =
∪
V ′⊆V

EDom(V ′)

of the functions holding on some variables from V and returning elements in E.

For example, DB,B is the set of Boolean functions of Boolean variables; it is the
interpretation domain of OBDDs [§ 1.1.2].

How It Is Expressed: Data Structures
Knowledge compilation aims at expressing functions as instances of specific data
structures. A data structure [see e.g. CL+01, Part III] is a particular organization
of computer data, together with some algorithms allowing data to be handled effi-
ciently, by taking advantage of this organization. Well-known data structures in-
clude stacks, queues, hash tables, trees, graphs…

A mathematical object, such as a function, is an abstract concept. To represent
it using data structures, it is necessary to model it, by identifying the basic oper-
ations by means of which it is handled. For instance, sets are “things” one can
intersect, unite, enumerate, etc. Once a model is described, it is possible to de-
fine a data structure implementing this model conveniently. This data structure is
not unique; different data structures can be used to express the same mathematical
object. This will raise differences in terms of efficiency, but does not necessarily
affect the correctness of the representation itself.

1Being the most general brick of the map, what we define here as a “representation language” is
different from the informal version of Darwiche and Marquis [DM02].
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We consider data structures in a rather abstract way, without focusing on the
implementation details. One important attribute of data structures that we often re-
fer to is thememory size its instances take. We join to each data structure an abstract
characteristic size function, associating with each instance φ of this data structure
a positive integer representative of its size. The characteristic size of φ, that we
denote by ∥φ∥ (to distinguish between the characteristic size and the cardinal, de-
noted as |S|), may not be directly equal to its actual memory size Mem(φ). The
key point is that characteristic size must have the same growth rate as memory size:
∥φ∥ ∈ Θ(Mem(φ)), that is, there exists two positive constants k1 and k2 such that
for sufficiently large φ, Mem(φ) · k1 ⩽ ∥φ∥ ⩽ Mem(φ) · k2.

For example, let us consider a data structure used to represent enumerated sets
of real numbers, and another one used to represent enumerated sets of integers. It
is likely that instances of the former need more memory space than instances of the
latter, since real numbers are more spatially costly than integers. However, if the
data structures are similar except for the type of the numbers, they have the same
characteristic size, since they are equivalent modulo a multiplicative constant.

A given instance of a given data structure can represent various mathematical
objects. For example, the linked list containing a → b → c can represent the se-
quence ⟨a, b, c⟩, the set {a, b, c}, the function from {1, 2, 3} to {a, b, c} associating
a with 1, b with 2, and c with 3, etc. This interpretation entirely depends on the
context in which it is used: this is where the notion of language is needed.

Linking Interpretation Domains to Data Structures: Languages

We can now introduce representation languages, following Fargier and Marquis
[FM09].
Definition 1.2.2. A representation language is a triple L = ⟨DV,E ,R, J·K⟩, where:

• DV,E is an interpretation domain, associated with some finite set of variables
V ⊆ V (called the scope of L) and some set E (called the valuation set of L);

• R is a set of instances of some data structure, also called L-representations;

• J·K : R → DV,E is the interpretation function (or semantics) of L, associating
with each L-representation a function holding on some variables of V and
returning elements of E.

A representation language is basically a set of structures called representations,
each one being associated with a function, called its interpretation. This definition
is quite general2 and allows us to introduce several notions (sublanguage, fragment,
succinctness…) without making assumptions on variables or data structures.

For the sake of simplicity, when considering a representation language L, we
implicitly define it as L = ⟨DVL,EL ,RL, J·KL⟩. Given an L-representation φ, we use

2It notably is more general than the original definition [FM09], which is in particular limited to
the DB,B interpretation domain.
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ScopeL(φ) to denote the set of variables on which the interpretation of φ holds:
ScopeL(φ) = Scope(JφKL). When there is no ambiguity, we drop the L subscript,
simply writing JφK and Scope(φ).

To illustrate the notion of representation language, let us take once again the
example of BDDs. Section 1.1.2 presented the “binary decision diagram” data
structure, and explained how it could be interpreted as a Boolean function over
Boolean variables. Those are all the elements of a representation language: de-
noting RBDD the set of all BDDs, and J·KBDD the interpretation function that has
been informally described, the BDD representation language can be defined as
LBDD = ⟨DB,B,RBDD, J·KBDD⟩.

Representation languages form a hierarchy, in that each language is obtained
by imposing a restrictive property to a more general language—as illustrated in
§ 1.1.2, FBDDs are read-once BDDs, OBDDs are ordered FBDDs, and so on. This
leads us to define the notion of sublanguage.
Definition 1.2.3 (Sublanguage). Let L1 and L2 be two representation languages. L2
is a sublanguage of L1 (denoted L2 ⊆ L1) iff each of the following properties hold:

• DVL2 ,EL2
⊆ DVL1 ,EL1

;

• RL2 ⊆ RL1 ;

• J·KL2 = (J·KL1)|RL2
.

It is thus possible to obtain a sublanguage by restricting variables, values, or rep-
resentations of a more general language; but the interpretation of representations
from the child language must remain the same as in the parent language. This def-
inition allows the language of OBDDs to be considered as a sublanguage of the
language of MDDs [see § 1.1.2], LOBDD ⊆ LMDD, since these two languages have
the same structural properties and valuation domain (Boolean), but are defined on
different variables—integer variables being more general than Boolean ones.

Note that one cannot generally restrict the interpretation domain of a language
without removing some representations, since the interpretation function J·K must
both remain the same and be defined on all of the sublanguage’s representations.
This can be seen with the next definition.
Definition 1.2.4 (Restriction on variables). Let L be a representation language, and
X ⊆ V . The restriction of L to variables from X , denoted LX , is the most general
(with respect to inclusion of representation sets) sublanguage L′ ⊆ L such thatEL′ =
EL and VL′ = X ∩ VL.

The main use of this definition is to restrict languages to Boolean variables; we use
the simple notation LB to represent the restriction of L to Boolean variables. Thus
LOBDD = (LMDD)B. As noted above, restricting the interpretation domain of LMDD
is sufficient for a number of representations to be removed: any representation
mentioning a non-Boolean variable cannot be an (LMDD)B-representation, since it
would be interpreted as a function depending on a non-Boolean variable. This is
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formally summarized by the following proposition.
Proposition 1.2.5. Let L be a representation language, and X ⊆ V . The representa-
tion set of LX is {φ ∈ RL | ScopeL(φ) ⊆ X }.

Proof. Note that, from the definitions, the interpretation domain and interpretation
function of LX are respectively DX∩VL,EL and (J·KL)|RLX

. This notably implies that
for any LX -representation φ, ScopeL(φ) ⊆ X ∩ VL. Now, let us consider an L-
representation ψ the scope of which is included in X . By definition of the scope, it
is also included in VL, and thus JψKL ∈ DX∩VL,EL . If ψ /∈ RLX , then we can define
another sublanguage L′ of L that is equal to LX except that RL′ = RLX ∪ {ψ}; this
is impossible, since LX is the most general sublanguage of L on this interpretation
domain. Hence ψ ∈ RLX , and the result follows.

Using this, we can already give a simple yet useful result on sublanguages: restrict-
ing variables maintains language hierarchy. This is due to the following lemma.
Lemma 1.2.6. Let L1 and L2 be two representation languages, and X ⊆ V be a set
of variables. For all representations φ1 ∈ RL1 and φ2 ∈ RL2 ,

Jφ1KL1 = Jφ2KL2 =⇒ φ1 ∈ RL1X ⇐⇒ φ2 ∈ RL2X .

Proof. Supposing Jφ1KL1 = Jφ2KL2 , we get that ScopeL1(φ1) = ScopeL2(φ2)
directly. Now, using Proposition 1.2.5, we know that the representation set of L1X
is {φ ∈ RL1 | ScopeL1(φ) ⊆ X }; we deduce from this that if φ1 ∈ RL1X ,
then its scope is included in X . Therefore the scope of φ2 is also included in X .
Since the representation set of L2X is {φ ∈ RL2 | ScopeL2(φ) ⊆ X } (still using
Proposition 1.2.5), this proves thatφ2 is an L2X -representation. Switching the roles
of L1 and L2, we get the equivalence and hence the result.

Proposition 1.2.7. Let L and L′ be two representation languages, and X ⊆ V be a
set of variables; it holds that L ⊆ L′ =⇒ LX ⊆ L′X .

Proof. Since L ⊆ L′, we know that DVL,EL ⊆ DVL′ ,EL′ . Therefore VL ⊆ VL′ , and
VL ∩X ⊆ VL′ ∩X . Thus, using the definitions, DVLX ,ELX

⊆ DVL′X
,EL′X

.
Let φ be an LX -representation. It is obviously an L-representation and also an

L′-representation; since it has the same interpretation in both of these languages,
we can use Lemma 1.2.6. We obtain that φ ∈ RL′X . Hence, RLX ⊆ RL′X .

We now prove the equality of interpretation functions. Using definitions again,

J·KLX = (J·KL)|RLX
=

(
(J·KL′)|RL

)
|RLX

= (J·KL′)|RL∩RLX
,

so J·KLX = (J·KL′)|RLX
, since RLX ⊆ RL. Also,

(J·KL′X )|RLX
=

(
(J·KL′)|RL′X

)
|RLX

= (J·KL′)|RL′X
∩RLX

and since we proved RLX ⊆ RL′X , it holds that (J·KL′X )|RLX
= (J·KL′)|RLX

.

16



1.2 A Framework for Language Cartography

Hence, we obtain that J·KLX = (J·KL′X )|RLX
; each item of the definition of a

sublanguage thus holds, and consequently LX ⊆ L′X .

All in all, our definition of a sublanguage allows languages on different inter-
pretation domains to be identified as belonging to the same “family”. Yet, in the
language hierarchy, the transition from a superlanguage to a sublanguage is most
often a structural restriction. For example, OBDDs are a specific kind of BDDs,
in which variables are encountered in the same order on all paths; but these two
languages are defined on the same variables and values. To reflect this, we refine
the notion of sublanguage.
Definition 1.2.8 (Fragment). Let L be a representation language. A fragment of L is
a sublanguage L′ ⊆ L verifying VL′ = VL and EL′ = EL.

A fragment is thus a particular kind of sublanguage, having the same interpretation
domain as its parent. LOBDD is a fragment of LBDD, but it is not a fragment of LMDD.
In the literature, there is to our knowledge no distinction between sublanguage and
fragment; we introduce it here to clarify later definitions. As far as we know, this
notion of fragment corresponds to what is usually used. Going on with concepts
related to the compilation map hierarchy, let us introduce a notation that will lighten
later definitions.
Definition 1.2.9 (Operations on fragments). Let L be a representation language, and
P a property on L-representations (that is, a function associating a Boolean value
with every element of RL).

The restriction of L to P (also called fragment of L satisfying P) is the fragment
L′ ⊆ L that verifies

∀φ ∈ RL, P(φ) ⇐⇒ φ ∈ RL′ .

Let L1 and L2 be two fragments of L. The intersection (resp. union) of L1 and L2
is the fragment of L the representation set of which is exactly the intersection (resp.
union) of the representation sets of L1 and L2.

1.2.3 Language Comparison
Evaluation of a language’s efficiency for a given application is based on four general
criteria:

1. expressivity (which functions is it able to represent?);

2. succinctness (how much space does it take to represent functions?);

3. efficiency of queries (how much time does it take to obtain information about
a function?);

4. efficiency of transformations (how much time does it take to apply operations
on the functions?).
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The first two criteria aim at comparing space efficiency of languages, while the last
two allow one to compare time efficiency. In the following, we formally define
these notions on representation languages in general. In practice, however, they
are mainly used to compare fragments or sublanguages of a given language.

Space Efficiency
The notion of expressivity was introduced in the form of a preorder on languages
by Gogic et al. [GK+95].
Definition 1.2.10 (Relative expressivity). Let L1 and L2 be two representation lan-
guages. L1 is at least as expressive as L2, which is denoted L1 ⩽e L2, if and
only if for each L2-representation φ2, there exists an L1-representation φ1 such thatJφ1KL1 = Jφ2KL2 .

Relation⩽e is clearly reflexive and transitive; it is thus a (partial) preorder, of which
we denote by ∼e the symmetric part and by <e the asymmetric part.3

Obviously, if two representation languages have disjoint scope or valuation set,
they are incomparable with respect to ⩽e. This explains why this criterion is con-
sidered apart from the others: users are supposed to know which expressivity they
need for their application. They will thus just discard languages that do no allow
them to represent the functions they need. But even if two languages are compa-
rable with respect to ⩽e, it is unlikely that users will concern themselves with the
relative expressivity of languages. For example, knowing that the language of Horn
formulæ is strictly less expressive than the language of CNFs does not help them;
what is good to know is that the former is not complete, whereas the latter is.

In order to define the completeness of a language, let us first introduce its (ab-
solute) expressivity.
Definition 1.2.11 (Expressivity). The expressivity of a representation language L is
the set Expr(L) = { f ∈ DVL,EL | ∃φ ∈ RL, JφKL = f } (it can be seen as the image
of RL by J·KL).

We simply define the expressivity of a language as the set of functions it allows to be
expressed. Note that we have in particular L2 ⩾e L1 ⇐⇒ Expr(L2) ⊆ Expr(L1).
Completeness can now be introduced.
Definition 1.2.12 (Complete language). A representation language L is complete if
and only if Expr(L) = DVL,EL .

To be complete, a language must be able to represent any function of its inter-
pretation domain. For example, the aforementioned language of BDDs, LBDD, is

3Let ⪯ be a partial preorder on a set S. We define the symmetric part ∼ and the asymmetric part
≺ of ⪯ as:

∀⟨a, b⟩ ∈ S2, a ∼ b ⇐⇒ a ⪯ b ∧ a ⪰ b,

∀⟨a, b⟩ ∈ S2, a ≺ b ⇐⇒ a ⪯ b ∧ a ̸⪰ b.
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complete, but the language of “BDDs having at most 3 nodes” defined on the same
interpretation domain is incomplete (it is impossible to represent propositional for-
mula x ∨ y ∨ z ∨ t with a 3-node BDD). Completeness is defined with respect
to the interpretation domain; two languages that differ only by their interpretation
domains have the same expressivity, but not necessarily the same completeness.
Thus, when defined on interpretation domain DVR,B, the language of BDDs is in-
complete. All in all, a fragment of an incomplete language cannot be complete, but
a sublanguage can. Examples of more realistic incomplete languages include the
language of propositional Horn clauses on interpretation domain DB,B [§ 1.3.3.3].

Once users have identified languages being expressive enough with regard to
their application, they must be able to compare these languages according to their
spatial efficiency. This is the role of succinctness, also introduced by Gogic et al.
[GK+95] (and further detailed by Darwiche and Marquis [DM02]).

Definition 1.2.13 (Succinctness). Let L1 and L2 be two representation languages.
L1 is at least as succinct as L2, which is denoted by L1 ⩽s L2, if and only if there
exists a polynomial P (·) such that for each L2-representation φ2, there exists a L1-
representation φ1 such that ∥φ1∥ ⩽ P (∥φ2∥) and Jφ1KL1 = Jφ2KL2 .

In the same way as ⩽e, ⩽s is a partial preorder, of which we denote by ∼s the
symmetric part and by <s the asymmetric part. Preorder ⩽s is a refinement of ⩽e,
since for all representation languages L1 and L2, it holds that L1 ⩽s L2 =⇒ L1 ⩽e

L2.
It is important to notice that succinctness only requires the existence of a poly-

size equivalent, be it computable in polytime or not. An interesting sufficient con-
dition for L1 ⩽s L2 to hold is that there exist a polyspace algorithm matching any
L2-representation to an L1-representation of equal interpretation. If we impose said
algorithm to be polytime, which is more restrictive (P ⊊ PSPACE unless P = NP
[see Pap94]), we get the following relation, introduced by Fargier and Marquis
[FM09].
Definition 1.2.14 (Polynomial translatability). Let L1 and L2 be two representation
languages. L2 is polynomially translatable into L1, which is denoted as L1 ⩽p L2, if
and only if there exists a polytime algorithm mapping each L2-representation φ2 to
an L1-representation φ1 such that Jφ1KL1 = Jφ2KL2 .

Once again, ⩽p is a partial preorder, of which we denote by ∼p the symmetric part
and by <p the asymmetric part; it is a refinement of succinctness, since for all rep-
resentation languages L1 and L2, it holds that L1 ⩽p L2 =⇒ L1 ⩽s L2. Obviously
enough, if L2 is a sublanguage of L1, then L1 ⩽p L2 (each L2-representation is an
L1-representation, so the algorithm is trivial).

The following proposition sums up the relationships between the three pre-
orders.
Proposition 1.2.15. Let L1 and L2 be two representation languages. The following
implications hold: L2 ⊆ L1 =⇒ L2 ⩾p L1 =⇒ L2 ⩾s L1 =⇒ L2 ⩾e L1.
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These comparison relations have in common that they still hold after restricting
both languages to a same set of variables.
Proposition 1.2.16. Let L and L′ be two representation languages, and ⩽ one of the
three comparison preorders we defined, ⩽p, ⩽s, or ⩽e. For any set of variables
X ⊆ V , it holds that

L ⩽ L′ =⇒ LX ⩽ L′X .

Proof. This is a corollary of Lemma 1.2.6. For LX ⩽ L′X to hold, there must
exist an algorithm verifying some given property P (it must be polytime for ⩽p,
have a polynomial output for ⩽s, and simply exist for ⩽e), that maps every L′X -
representation to an LX -representation of equal interpretation. Since L ⩽ L′, we
know that there exists an algorithm A verifying P and mapping every element in
L′ to an L-representation of equal interpretation. Let φ′ be an L′X -representation,
and φ the L-representation obtained thanks to A. Since φ and φ′ have the same
interpretation, we can use Lemma 1.2.6 to get that φ′ is an LX -representation. This
proves the proposition.

We now have tools to compare languages in terms of expressivity and spatial
efficiency, but this does not suffice for users to be able to pick a “good” language
for their application. Indeed, there are numerous operations that they may want to
apply on representations, and their efficiency greatly varies from one language to
another.

Operational Efficiency

The fundamental idea of the knowledge compilation map is to compare languages
with respect to their ability to support (or satisfy) elementary operations, that is,
their ability to allow these operations to be done in polytime. Users, after having
identified the operations they need to be done online, can thus choose a language
known to support these operations; they are then ensured that the complexity of
their online application is polynomial in the size of the structures handled online.

The idea of classifying languages according to the elementary operations they
support has been introduced by [DM02] for propositional languages. The authors
distinguish two categories of operations: queries and transformations. Queries are
operations that return information about the function that the compiled form rep-
resents; examples of queries in the case of a propositional language are “is the
formula consistent?” or “what are the models of this formula?”. Transformations
are operations that return an element of the language considered; examples of trans-
formations in the case of a propositional language are “what is the negation of this
formula?” or “what is the conjunction of these two formulæ?”.

We see that in both cases, queries and transformations return something; the
distinction between the two may appear superficial at first glance. Yet, it is quite
important: queries are independent of the language considered, while transforma-
tions depend on it. Indeed, again in the case of propositional languages, the output
of the query “is the formula consistent?” is the same, be the formula represented
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by a CNF, a DNF, an OBDD, or any other Boolean fragment. On the contrary, the
output of the transformation “what is the negation of this formula?” is supposed
to be in the same language the formula is represented in; that is, if our formula is
a BDD, we want its negation to be a BDD, which is easy, but if our formula is a
DNF, we want its negation to be a DNF, which is hard.

Let us give here a formal definition of the satisfaction of a query and of a trans-
formation. Each operation is associated with a “request function”, that gives an
answer (an element of a set Answers, often a Boolean) to a question (that depends
on parameters, represented by elements of a set Params) about some representa-
tions of a language. For example, for the “model checking” query, Params is the
set of all possible assignments, and Answers = B.
Definition 1.2.17 (Query and transformation). LetD be some interpretation domain,
n ∈ N∗, Params and Answers some sets, and f : Dn × Params → Answers. We
say that f is a request function. Let L be a representation language of interpretation
domain included in D.

L is said to satisfy or support the query Q associated with f if and only if there
exists a polynomial P and an algorithm mapping every n-tuple of L-representations
⟨φ1, . . . , φn⟩ and every element π ∈ Params to an element α ∈ Answers such that
α = f(Jφ1KL, . . . , JφnKL, π) in time bounded by P (∥φ1∥, . . . , ∥φn∥, ∥π∥, ∥α∥).

If Answers = D, L is said to satisfy or support the transformation T associated
with f if and only if there exists a polynomial P and an algorithm mapping every
n-tuple of L-representations ⟨φ1, . . . , φn⟩ and every element π ∈ Params to an
L-representation ψ such that JψKL = f(Jφ1KL, . . . , JφnKL, π) in time bounded by
P (∥φ1∥, . . . , ∥φn∥, ∥π∥).

For the sake of illustration, we give a formal definition of the “model checking”
query, using this formalism. Let L be a representation language on interpretation
domain DV,B; let Params be the set of V -assignments; the “model checking” query
on L is hence the query associated with the request function

f :
DV,B × Params → B

⟨I, #—v ⟩ 7→ I( #—v )
.

It is important to notice that for a language to support a query, the algorithm
needs not have an output of size polynomial in the input, since the bounding poly-
nomial depends on the sizes of both the input and the output. This way, queries the
output of which is exponential in the input (for example, enumerating the models of
a propositional formula) can actually be satisfied. But regarding transformations,
the size of the output compiled form is necessarily polynomial in the size of the
input (since any polytime algorithm is also polyspace: P ⊆ PSPACE [see Pap94]).

Despite having only a general definition of a query and a transformation, we
can already prove the following simple properties.
Proposition 1.2.18. Let D be some interpretation domain, and let L1 and L2 be two
representation languages of interpretation domains included in D.
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• If L1 ⩽p L2, then queries supported by L1 are also supported by L2.

• If L1 ∼p L2, then L1 and L2 support the same queries and transformations.
The first item of this proposition illustrates the distinction between queries and
transformations: L1 ⩽p L2 is sufficient for L2 to support the queries supported by
L1, because in order to obtain the answer to a query Q on a L2-representation φ2, we
only have to compute a L1-representation φ1 of Jφ2K (which is done in polytime),
and ask the query on φ1 (which is also polytime since L1 satisfies Q). But we
cannot use the same procedure with transformations: supposing that L1 supports a
transformation T and that L1 ⩽p L2, we can obtain in polytime an L1-representation
of the answer of the request for a L2-representation, but the transformation imposes
that the result be an L2-representation, and we do not know whether we can obtain
such a representation in polytime. If we also suppose that L1 ⩾p L2, then it is the
case: we can translate the result from L1 back to L2 in polytime, and therefore L2
supports T—this explains the second item of the proposition.

Of course, the elementary requests differ regarding the kind of function is rep-
resented by the target language considered. For example, consistency is a property
of Boolean functions, arithmetical sum is an operation on arithmetic functions. At
first glance, it does not seem to make sense to ask whether an ADD [§ 1.1.2] is con-
sistent, or to make the arithmetical sum of two OBDDs. It is certainly possible to
generalize, defining queries and transformations that hold on any language; for ex-
ample, the VNNF framework [FM07] contains general queries and transformations
that actually capture the more specific “consistency” query and “arithmetical sum”
transformation. However, since the present work details the knowledge compila-
tion map only for Boolean languages, we refrain from establishing a complete list
of general-range queries and transformations.

The general notions pertaining to the knowledge compilation map are now de-
fined, and apply to languages representing a wide range of functions. In the fol-
lowing section, we define a number of state-of-the-art Boolean languages.

1.3 Boolean Languages

We call Boolean languages, the representation languages L such that EL = B (but
without restriction on the variables): the interpretation domain of Boolean lan-
guages is actually the space of Boolean functions. The study of Boolean languages
is the most developed area of knowledge compilation; a possible explanation is that
it is a simple yet powerful, historically important framework. Note that Boolean
functions can also be seen as sets of assignments; this notably allows them to en-
compass constraint networks [§ 1.6.1], understood as the set of their solutions.

In this section, we define a number of Boolean languages that can be found in
the literature, and for which some knowledge compilation results are known. We
are not concerned with the higher-level, very succinct logics, like those listed by
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Gogic et al. [GK+95]; we limit ourselves to a particular (although quite general)
data structure, namely rooted, directed acyclic graphs.

1.3.1 General Rooted DAG Languages

Many representations of Boolean functions have the form of rooted, directed acyclic
graphs (DAGs), and what is more, use the same general mechanisms. We define
here the general language of rooted DAGs, which we call GRDAG, encompassing all
other Boolean languages we are going to define.

Let us first formally define the notion of directed graph, and its associated con-
cepts [see e.g. Gib85].
Definition 1.3.1 (Directed graph). A directed graph Γ is a couple ⟨NΓ,EΓ⟩, where
NΓ is a finite set whose elements are called nodes (or vertices), and EΓ ⊆ N 2

Γ is a
set of node couples, called edges (or arcs).

Let E = ⟨N1, N2⟩ ∈ EΓ; N1 is said to be the source of edge E, and N2 its
destination; N2 is called a child of N1, and N1 a parent of N2. The outgoing edges
of a node N are the edges the source of which is N ; the incoming edges of a node
N are the edges the destination of which is N .

Let N ∈ NΓ; N is called a root of Γ if and only if it has no parent. N is called
a leaf of Γ if and only if it has no child.

We denote as Src(E) (resp. Dest(E)) the source (resp. destination) of an edge E,
as Out(N) (resp. In(N)) the set of outgoing (resp. incoming) edges of a node N ,
and as Ch(N) (resp. Pa(N)) the set of children (resp. parents) of a node N . Note
that definition does not prevent a graph from being empty, that is, having no node
or edge at all. Note also that it prevents graphs from being infinite.

In knowledge compilation, graphs are almost always labeled, that is, nodes
and/or edges are associated with some mathematical object, e.g., a variable or a
value. With our definition of a directed graph, there can be at most one edge be-
tween two given nodes; because of the labeling, we sometimes need to use directed
multigraphs rather than graphs. Directed multigraphs are defined in the same way
as directed graphs, with the difference that EΓ is a finite multiset of node couples—
allowing us to define several edges, with possibly different labels, between two
given nodes.

Now, to introduce DAGs, we need the following classical notions of path and
cycle.

Definition 1.3.2 (Path and cycle). Let Γ be a directed graph (or multigraph), and N
and N ′ two nodes in Γ. A path from N to N ′ is a (possibly empty, not necessarily
finite) sequence of edges p = ⟨E1, E2, . . . , Ek⟩ ∈ E k

Γ such that

• Src(E1) = N and Dest(Ek) = N ′;

• ∀i ∈ {1, . . . , k − 1},Dest(Ei) = Src(Ei+1).
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If there exists a path from N to N ′, N is called an ancestor of N ′, and N ′ a
descendant of N .

A cycle in Γ is a non-empty path from a node N ∈ NΓ to itself.

We can now define DAGs and rooted DAGs.
Definition 1.3.3 (DAG). A directed acyclic graph (DAG) is a directed graph without
any cycle.

It is said to be rooted if and only if it is empty or has exactly one root.

Note the importance of the “non-empty path” condition on cycles: without it, all di-
rected graphs would trivially be DAGs. Remark also that non-empty rooted DAGs
have at least one leaf—which can also be the root.

We can now proceed with our definition of a general graph-based Boolean
language. This generalization is inspired from the work of Fargier and Marquis
[FM07]. 4

Definition 1.3.4 (GRDAG). A general rooted DAG (GRDAG) is a non-empty
rooted, directed acyclic graph meeting the following requirements:

• each leaf is labeled with a Boolean constant ⊤ or ⊥ (the leaf is a constant), or
by a couple ⟨x,A⟩, with x a variable and A a set (the leaf is a literal);

• each non-leaf (internal) node is either labeled with a binary operator on B
and has two (ordered) children, or is labeled with the unary operator ¬ or a
quantifier ∃x or ∀x (with x ∈ V), and has exactly one child.

Figure 1.5 shows an example of a GRDAG. Note that a node can be labeled
with any binary operator, not only “∨” or “∧”, but also “⊕” (exclusive or), “→”
(implication), negation of conjunction or disjunction, etc. In particular, label oper-
ators do not have to be commutative or associative. The order of the children has
to be recorded, as can be seen on the example (implication node). We denote by
BB

2 the set of all binary operators on B, and by Ops the set BB2 ∪ {¬, ∃, ∀}.
In order to define the size function of GRDAGs, we begin by defining the size

of a node N : ∥N∥ = 1 in all cases, unless it is a literal ⟨x,A⟩, in which case
∥N∥ = ∥A∥ (which depends on the way A is represented). Now, for any GRDAG
φ, denoting Nφ the set of its nodes, ∥φ∥ =

∑
N∈Nφ

∥N∥+
∑

x∈Scope(φ)∥Dom(x)∥.
We have to incorporate the size of the variables’ domains, since we cannot consider
that the structure just mentions variables, without having any information about the
variables themselves. This would indeed compromise the polynomiality of some
important requests, such as negation. This is however generally harmless—we sel-
dom consider “complicated” domains, but rather domains representable by an in-
terval, specified by its two bounds.

4 The VNNF language they define is much more general, since it encompasses various frameworks,
some of which not being in the scope of knowledge compilation. However, our GRDAG language is
not strictly speaking included in VNNF, since we slightly generalize some of its elements [see also
§ 1.5.4].
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z = ⊤

x ∈ [10.2, 15]

y ∈ {3, 8, 10}

x ∈ [3.2, 5.7]

→

∨

∧

∀x

⊕

∧

(1)

(2)

Figure 1.5: An example of a GRDAG. It holds on the following variables: x ∈ VR,
y ∈ VN, and z ∈ B.

Definition 1.3.5 (Semantics of a GRDAG). The interpretation and scope of a
GRDAG φ are inductively defined as follows.

• If the root of φ is a leaf labeled with ⊥ (resp. ⊤), then Scope(φ) = ∅, andJφK is the constant function always returning ⊥ (resp. ⊤).

• If the root of φ is a leaf labeled with ⟨x,A⟩, then Scope(φ) = {x}, and JφK is
the function Dom(x) → B such that for any {x}-assignment #—x , JφK( #—x ) = ⊤
if and only if #—x ∈ A holds.

• If the root of φ is an internal node labeled with a binary operator ⊗, then
(denoting Nl and Nr its children, and φl (resp. φr) the GRDAG rooted at
Nl (resp. Nr)) Scope(φ) = Scope(φl) ∪ Scope(φr), and JφK is the function
Dom(Scope(φ)) → B such that for any Scope(φ)-assignment #—v , JφK( #—v ) =JφlK( #—v )⊗ JφrK( #—v ).

• If the root of φ is an internal node labeled with unary operator ¬, then (denot-
ing Nc its child, and φc the GRDAG rooted at Nc) Scope(φ) = Scope(φc),
and JφK is the function Dom(Scope(φ)) → B such that for any Scope(φ)-
assignment #—v , JφK( #—v ) = ¬JφcK( #—v ).

• If the root of φ is an internal node labeled with quantification ∀x (resp. ∃x),
then (denoting Nc its child, and φc the GRDAG rooted at Nc) Scope(φ) =
Scope(φc) \ {x}, and JφK is the function Dom(Scope(φ)) → B such that for
any Scope(φ)-assignment #—v , JφK( #—v ) = ⊤ if and only if for all #—x ∈ Dom(x),JφcK( #—v . #—x ) = ⊤ (resp. there exists an #—x ∈ Dom(x) such that JφcK( #—v .
#—x ) = ⊤).
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Chapter 1 Knowledge Compilation

It is important to notice that GRDAGs are very close to classical logic formulæ;
the difference is that instead of holding on Boolean variables, they hold on “mem-
bership conditions”. This echoes the satisfiability modulo theories (SMT) prob-
lem, which consists in checking the consistency of a logic formula, with some
Boolean variables being replaced by predicates of given first-order theories [see e.g.
Seb07]. A second difference between GRDAGS and classical logic formulæ is that
GRDAGS are not represented as sequences of symbols, but as graphs, which avoids
repetition of common subformulæ, in the same way as the merging of isomorphic
subgraphs in BDDs [§ 1.1.2.3]. Despite these differences, we will sometimes call
GRDAGs formulæ or sentences.

Using these various elements, we can now define the GRDAG representation lan-
guage.
Definition 1.3.6. GRDAG is the representation language ⟨DV,B,R, J·K⟩, with R the
set of all GRDAGs and J·K the interpretation function given in Definition 1.3.5.

Note the font difference between “GRDAG ” (which denotes the representation lan-
guage) and “GRDAG” (which denotes a GRDAG-representation). In the following,
we always use a specific font to distinguish a language from a structure, as it is
done in the original knowledge compilation map [DM02].

We further define three useful parameters. The height of a GRDAG φ, denoted
h(φ), is the number of edges in the longest path from the root to any leaf of φ. The
label set of φ, denoted Labels(φ), is the set of all sets with which some literal is
labeled in φ. The operator set of φ, denoted Ops(φ), is the set defined as follows:

• Ops(φ) ⊆ Ops;

• Ops(φ) contains ⊗ ∈ BB
2 ∪ {¬} if and only if at least one node in φ is

labeled with ⊗;

• Ops(φ) contains ∃ (resp. ∀) if and only if at least one node in φ is labeled
with ∃x (resp. ∀x), with x ∈ V .

Some simplifications are used, in order to improve clarity or lighten notations. First
of all, no distinction is generally made between a node N and the graph φ rooted
at N ; thus Scope(N) simply corresponds to Scope(φ) (this simplification occurs
for all DAGs, not only GRDAGs). We also usually do not distinguish, in the text,
between a graph and its interpretation: we for example call “literal” a graph con-
sisting only of a literal leaf. Referring to the fact that GRDAGs can be seen as
Boolean formulæ, we will sometimes use the formulation “an

[
x ∈ A

]
∧
[
y ∈ B

]
node” to talk about a ∧-node having two literals as children, respectively labeled
with ⟨x,A⟩ and ⟨y,B⟩. Another very common simplification is to allow nodes la-
beled with operators that are associative and commutative to have arbitrarily many
children; this is considered harmless since it only changes the characteristic size
logarithmically.

A first result on GRDAG is that it is an incomplete language. This is due to the
limitation of literals to membership constraints.
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1.3 Boolean Languages

Proposition 1.3.7. GRDAG is incomplete.

This can be seen for example on a function f : R2 → B defined by f : ⟨x, y⟩ 7→[
x = y

]
. f can be represented by the formula f =

∨
r∈R(

[
x ∈ {r}

]
∧
[
y ∈ {r}

]
),

but this formula cannot be expressed as a GRDAG, since we consider all graphs
to be finite. This incompleteness does not imply that all sublanguages of GRDAG
are incomplete: as mentioned earlier, completeness depends on the interpretation
domain. For instance, GRDAGB is complete.

The remainder of this section is dedicated to the presentation of state-of-the-
art compilation languages. However, the way we define them makes them more
general than they are in the literature, since we allow non-Boolean, non-enumerated
variables. We will specify in each case on which category of variables the language
was originally defined. A consequence of this generalization is that GRDAGs allow
literals representing

[
x ∈ A

]
, with A not being a singleton, and not being included

in Dom(x). This will be useful in further chapters of this thesis [Part II], but in
the literature all languages only allow singleton, domain-included literals. We thus
need to introduce a restriction of GRDAGs.
Definition 1.3.8 (Restricted literal expressivity). Let A be a set of sets and φ a
GRDAG. We say that the literal expressivity of φ is restricted to A if and only if
Labels(φ) ⊆ A. We denote as GRDAGA the sublanguage of GRDAG with literal ex-
pressivity restricted to A.

The main restriction of literal expressivity that we will need to characterize lan-
guages from the literature, is the restriction to literals of the form ⟨x,⊤⟩ and ⟨x,⊥⟩,
excluding those of the form ⟨x,∅⟩ and ⟨x, {⊥,⊤}⟩. We will thus often consider
fragments of GRDAGSBB , the set SB being the set of singletons of B. Sometimes
fragments of GRDAGSZE will be encountered, E being the set of enumerated vari-
ables (of finite integer interval domain) and SZ the set of singletons of Z.

1.3.2 Fragments Based on Operator Restrictions

We obtain various sublanguages of GRDAG by restricting the operators with which
nodes can be labeled.

Restricting to Basic Operators
We begin with a fragment of great importance in knowledge compilation, since it is
the original “root” of the propositional compilation map [DM02]. Taking its name
from the negation normal form sentences of propositional logic [see e.g. Bar77], it
has been introduced as a compilation language by Darwiche [Dar01a].
Definition 1.3.9 (NNF). A GRDAG φ is in negation normal form (NNF) if and only
if Ops(φ) ⊆ {∧,∨}.

NNF is the restriction of GRDAG to NNF formulæ.

Using this definition, the name “negation normal form formula” seems weird, since
we removed negation from the operators authorized as labels for internal nodes. In
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Chapter 1 Knowledge Compilation

its original propositional definition (which corresponds to NNFSBB here), this name
refers to the fact that all negations are on literals. As we consider NNFs on non-
Boolean variables, with leaves of the form

[
x ∈ A

]
, there is no reference to nega-

tion anymore (the propositional literal ¬x is represented by a literal ⟨x, {⊥}⟩ in a
GRDAG); we nevertheless keep the name for the sake of clarity.

Adding Negation
The fragment PDAG has been defined by Wachter and Haenni [WH06] as an exten-
sion of NNF, adding the possibility to use ¬-nodes.
Definition 1.3.10 (PDAG). A GRDAG φ is called a propositional DAG (PDAG), if
and only if Ops(φ) ⊆ {∧,∨,¬}.

PDAG is the restriction of GRDAG to PDAGs.

In their original sense, PDAGs are actually PDAGSBB -representations, and moreover
only contain positive literals; they have been modified to include negative literals by
Fargier and Marquis [FM08a], the modification being harmless and making PDAGs
definition-wise closer to NNFs. It is indeed trivial that NNF ⊆ PDAG.

Adding Quantifiers
The following language embraces most usual languages in the knowledge compila-
tion framework; it was introduced [FM08a] to take advantage of closure principles
[§ 1.3.7].
Definition 1.3.11 (QPDAG). A GRDAG φ is called a quantified propositional DAG
(QPDAG) if and only if Ops(φ) ⊆ {∧,∨,¬, ∃,∀}.

QPDAG is the restriction of GRDAG to QPDAGs.

The original QPDAG language [FM08a] corresponds to QPDAGSBB here.

1.3.3 “Historical” Fragments

In this section, we recover as fragments of NNF some well-known languages that
were used before knowledge compilation had been formalized. They have been
linked to the map by Darwiche and Marquis [DM02] and Fargier and Marquis
[FM08b].

Flattening NNF Languages
Let us begin by generalizing important elements of propositional logic, viz., clauses
and terms, to our GRDAG framework.
Definition 1.3.12 (Clauses and terms). A node in a GRDAG is a clause (resp. a term)
if and only if it is a constant, a literal, or an internal node labeled with ∨ (resp. by
∧) whose children are literals. We accordingly call clause (resp. a term) a GRDAG
whose root is a clause (resp. term).

We define term as the restriction of GRDAG to terms, and clause as the restric-
tion of GRDAG to clauses.
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1.3 Boolean Languages

The following definition [DM02] introduces the first operationally efficient lan-
guages of this map.
Definition 1.3.13 (Flatness and simple-junction). An NNF sentence φ is flat if and
only if h(φ) ⩽ 2.

An NNF sentence satisfies the simple-disjunction (resp. simple-conjunction)
property if and only if each ∨-node (resp. each ∧-node) is a clause (resp. a term)
and its children share no variables.

f - NNF is the fragment of NNF satisfying flatness; CNF and DNF are the fragments
of f - NNF respectively satisfying simple-disjunction and simple-conjunction.

CNF and DNF are named after the form of their representations: indeed, CNFSBB
and DNFSBB -representations are the well-known conjunctive normal form (CNF) and
disjunctive normal form (DNF) formulæ.

Prime Implication
We proceed with other well-known subsets of CNFs and DNFs, for which we keep
their original meaning of propositional languages.
Definition 1.3.14 (Prime implicates and PI). A CNF formula φ is a prime implicate
if and only if:

• for every clause δ1 such that φ |= δ1, there exists a clause δ2 in φ verifying
δ2 |= δ1;

• φ contains no couple ⟨δ1, δ2⟩ of clauses such that δ1 |= δ2.

PI is the restriction of CNFSBB to prime implicates.

Definition 1.3.15 (Prime implicants and IP). A DNF formula φ is a prime implicant
if and only if:

• for every term γ1 such that γ1 |= φ, there exists a term γ2 in φ verifying
γ1 |= γ2;

• φ contains no couple ⟨γ1, γ2⟩ of terms such that γ1 |= γ2.

IP is the restriction of DNFSBB to prime implicants.

Krom and Horn
To help introduce the following fragments, which once again keep their original
Boolean meaning, let us define a positive literal as a literal of the form

[
x = ⊤

]
,

and a negative literal as a literal of the form
[
x = ⊥

]
. The complement of a literal[

x = ⊤
]

(resp.
[
x = ⊥

]
) is

[
x = ⊥

]
(resp.

[
x = ⊤

]
). We now define the

classic Krom, Horn, and renamable Horn formulæ, and follow Fargier and Marquis
[FM08b] to include them in the compilation map.
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Chapter 1 Knowledge Compilation

Definition 1.3.16 (Krom, Horn). A Krom clause is a clause having at most two lit-
erals. A Horn clause is a propositional clause having at most one positive literal.

A CNF sentence whose all clauses are Krom clauses (resp. Horn clauses) is
called a Krom-CNF formula (resp. a Horn-CNF formula).

The languages KROM - C and HORN - C are the restrictions of CNFSBB to Krom-CNFs
and Horn-CNFs, respectively. The K/H - C language is the union of KROM - C and
HORN - C.

Definition 1.3.17 (Horn-renamability). A propositional CNF φ is Horn-renamable
if and only if there exists a subsetV ⊆ Scope(φ) (called aHorn renaming forφ) such
that if we substitute in φ every literal l such that Scope(l) ∈ V by its complement,
we obtain a Horn-CNF formula.

renH - C is the fragment of CNFSBB satisfying Horn-renamability.

1.3.4 Fragments Based on Node Properties
Following the classical presentation of the propositional knowledge compilation
map, this section groups together two fundamental properties on ∧- and ∨-nodes.

Darwiche [Dar98] introduced decomposable NNF formulas for characterizing
consistency-based diagnoses. This turned out to be a quite influential fragment, oc-
cupying an advantageous place in the knowledge map (more succinct than classical
languages, yet supporting fundamental operations in polytime). Decomposability
was first defined as a property of ∧-nodes, but Fargier and Marquis [FM06] applied
the property to ∨-nodes, and finally extended the definition to any node (renaming
it “simple decomposability”) [FM07].
Definition 1.3.18 (Decomposability). A node N of a GRDAG is decomposable if
and only if its children do not share any variable, that is, for each couple ⟨N1, N2⟩
of distinct children of N , Scope(N1) ∩ Scope(N2) = ∅.

A GRDAG is decomposable if and only if all of its ∧-nodes are decomposable.
DNNF is the fragment of NNF satisfying decomposability.

Note that in a decomposable graph, only ∧-nodes must be decomposable. Contrary
to decomposability, determinism [Dar01b] is only defined on ∨-nodes.
Definition 1.3.19 (Determinism). A node N of a GRDAG is deterministic if and
only if it is labeled with ∨ and its children are pairwise logically contradictory, that
is, for each couple ⟨N1, N2⟩ of distinct children of N , JN1K ∧ JN2K |= ⊥.

A GRDAG is deterministic if and only if all of its ∨-nodes are deterministic.
d - NNF is the fragment of NNF satisfying determinism; d - DNNF is the intersection

of d - NNF and DNNF.

1.3.5 The Decision Graph Family
The previous section defined restrictive properties holding on single nodes; we now
present properties that involve several nodes at a time. We recover here in particular
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x = 1 ϕ1 . . .

∧

x = 2.4 ϕ2 . . .

∧

x = 5.71 ϕ3 . . .

∧

∨

ϕ1 . . . ϕ2 . . . ϕ3 . . .

x

1 2.4 5.71

Figure 1.6: A GRDAG decision node (left) and its simplified representation (right).
On the GRDAG version, the root ∨-node is a decision node, and the three ∧-nodes are
assignment nodes. In the simplified representation, the decision node corresponds
to the variable-labeled node, and each assignment node corresponds to a labeled
edge.

the famous BDDs [§ 1.1.2] as NNF sentences. Following Fargier and Marquis
[FM06], we present the decision graph family using “cascading” definitions: we
start by defining the notion of assignment nodes, then decision nodes are defined
using the latter notion, and we can then present various languages depending on the
properties of the nodes—for example, the language of graphs in which all decision
nodes are exclusive, that of graphs in which all ∧-nodes are assignment nodes, etc.

First, let us present assignment nodes [FM06, FM07].
Definition 1.3.20 (Assignment node). A nodeN of a GRDAG is an assignment node
if and only if it is labeled with ∧ and has exactly two children, exactly one being a
literal.

An assignment node N thus has the form
[
x ∈ A

]
∧α; we say that N is an assign-

ment node on x, and denote variable x as Varass(N) and subgraph α as Tailass(N).
The name “assignment node” comes from the original Boolean definition; here,
such nodes do not really assign values to their variables, but only restrict their pos-
sible values. We nonetheless keep the original name, similarly to what is done in
the VNNF framework [FM07].

We can now give the definition of a decision node, still following Fargier and
Marquis [FM07], who built up on the work of Darwiche and Marquis [DM02].
Definition 1.3.21 (Decision node). A nodeN of a GRDAG is a decision node if and
only if it is labeled with ∨ and all of its children are assignment nodes on the same
variable x.

A decision node N thus has the form (
[
x ∈ A1

]
∧ α1) ∨ · · · ∨ (

[
x ∈ Ak

]
∧ αk);

we say that N is a decision node on x, and use Vardec(N) to denote variable x.
Figure 1.6 shows the correspondence between GRDAG decision nodes as we just
defined, and decision nodes as they are classically represented, in the context of
decision diagrams. The two representations are equivalent; we will refer to them
as “GRDAG version” and “decision diagram version” respectively.

We define exclusive decision nodes by applying a restriction to the children of
decision nodes.
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Figure 1.7: On the left, a GRDAG satisfying weak decision; the ⊗ label is a place-
holder for either ∨ or ∧—in both cases, weak decision is satisfied. On the right, the
“decision diagram version” of this GRDAG.

Definition 1.3.22 (Exclusiveness). Two assignment nodes on a same variable x in
a GRDAG are exclusive if and only if their respective literals are disjoint, that is,
denoting ⟨x,A1⟩ and ⟨x,A2⟩ the two literals, A1 ∩A2 = ∅.

A decision node is exclusive if and only if its children are pairwise exclusive
assignment nodes.

A GRDAG φ satisfies the exclusive decision property if and only if all of its
decision nodes are exclusive.

If a graph satisfies the exclusive decision property, it is guaranteed that the branches
of each decision node be mutually disjoint. In the decision diagram version (using
variable-labeled nodes and labeled edges), this implies that there can be at most
one path compatible with a given assignment: no choice is possible at a deci-
sion node. In particular, GRDAGs satisfying the exclusive decision property are
deterministic—but the reverse is not true.

The following properties, holding on the graphs’ structure, finally allow us to
define languages.

Definition 1.3.23 (Decision properties). Let φ be a GRDAG.

• φ satisfies the weak decision property if and only if:

– each literal in φ has at least one parent, and all its parents are assignment
nodes, and

– each assignment node in φ has at least one parent, and all its parents are
decision nodes.
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• φ satisfies the ∨-simple decision property if and only if it satisfies weak deci-

sion, and all of its ∨-nodes are decision nodes.
• φ satisfies the ∧-simple decision property if and only if it satisfies weak deci-

sion, and all of its ∧-nodes are assignment nodes.

• φ satisfies the (strong) decision property if and only if it satisfies both the ∨-
and ∧-simple decision.

This definition comes from the work of Fargier and Marquis [FM06], with a few
modifications. In particular, we refined the “simple decision” property into three.

Weak decision is simply the condition for a GRDAG to belong to the “decision
family”. Indeed, it ensures that no literal or assignment node is “free”, since such
elements have no representation in the “decision diagram version”. For example,
the GRDAG

[
x = 1

]
∨
[
y = 3

]
does not satisfy weak decision, because literals

are not children of assignment nodes. On the contrary, the GRDAG in Figure 1.7
satisfies weak decision.

In addition to this requirement, ∨-simple decision (resp. ∧-simple decision)
ensures that there is no “free” ∨-node (resp. ∧-node). For example, going back to
the GRDAG in Figure 1.7, if the ⊗ operator is a ∧, then the GRDAG satisfies ∨-
simple decision: all ∨-nodes are decision nodes, but there can be ∧-nodes linking
these decision nodes. The decision diagram version of these “free” ∧-nodes are
simply pure conjunctive nodes. Similarly, if the⊗ operator is a∨, then the GRDAG
satisfies ∧-simple decision: there can be pure disjunctive nodes in the decision
diagram version, but no pure conjunctive node.

The strongest requirement is to forbid both pure disjunctive nodes and pure
conjunctive nodes, that is, to satisfy∧-simple and ∨-simple decision altogether: the
decision diagram version of the graph then contains only variable-labeled nodes.
We call this property “strong decision” to emphasize its meaning; in the original
work [FM06], this property was simply referred to as the “decision property”.

We can now define various decision graph languages, still following this paper.

Definition 1.3.24. A decision graph (DG) is an NNF sentence satisfying ∨-simple
and exclusive decision. DG is the restriction of NNF to decision graphs.

DDG is the fragment of DG satisfying decomposability.
A basic decision diagram (BDD) is an NNF sentence satisfying strong and ex-

clusive decision. BDD is the restriction of NNF to BDDs.
A free(-ordered) BDD (FBDD) is a BDD satisfying decomposability. FBDD is

the restriction of NNF to FBDDs.

Note here that, as with NNF, we used the names of Boolean fragments for languages
that are not necessarily Boolean. Hence, using the previous definition, a BDD can
here hold on non-Boolean variables: the classical BDD language actually corre-
sponds to BDDSBB . For that reason, we changed the meaning of the initials BDD
from binary decision diagram to basic decision diagram, since our BDDs have no
more reason to be called “binary” than any other structure in this map.
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⊤

⊥

x

y

∧

Figure 1.8: A very simple example of a DG on Boolean variables x and y; the pure
conjunctive node allows us to consider the two subgraphs independently.

Remark that the FBDD language is the language of BDDs in which variables
cannot be repeated along a path (in the decision diagram version of the graphs). This
requirement boils down to imposing decomposability [DM02]: we just want that for
each assignment node N , Varass(N) /∈ Scope(Tailass(N)), which is equivalent to
imposing that the scopes of the children of N be disjoint.

Decision graphs (DG-representations) basically add to decision diagrams the
possibility to use pure conjunctive nodes between decision nodes, allowing par-
allel assignments, as shown in Figure 1.8.

1.3.6 Ordering for Decision Graphs

General Ordering

This section deals with the ordering of decision graphs, which is not as straight-
forward as it was when introduced by Bryant [Bry86] on binary decision diagrams.
Although the following definition of an ordered graph is very close to the one intro-
duced by Bryant, it must be noted that the order needs not be total—which allows
one to take advantage of the “parallel” structure of decision graphs.
Definition 1.3.25 (Ordering). Let < be a strict order on some V ⊆ V; a GRDAG φ
is ordered by< if and only if Scope(φ) ⊆ V and for each couple ⟨N1, N2⟩ of distinct
decision nodes in φ such that N1 is an ancestor of N2, it holds that Vardec(N1) <
Vardec(N2).

O - DDG< is the restriction of DDG to graphs ordered by <. O - DDG is the union of
all O - DDG<, for every possible strict order <.

Let < be a total strict order on some V ⊆ V; OBDD< is the restriction of BDD to
graphs ordered by <. OBDD is the union of all OBDD<, for every possible total strict
order <.

OBDDSBB contains ordered binary decision diagrams as they have been introduced
by Bryant [Bry86]. Recalling that E is the set of enumerated variables [§ 1.2.1],
OBDDSZE contains multivalued decision diagrams (MDDs) [SK+90] and finite-state
automata [Vem92]—we use the notation MDD = OBDDSZE . In a similar way, we can
recover a more exotic language, BED, defined by Andersen and Hulgaard [AH97]
as an extension of OBDDs. Its particularity is that it allows any binary operator
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⊤
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Figure 1.9: An example of a Boolean expression diagram, with decision nodes
represented in simplified form. Variables x and y are Boolean.

between decision nodes; it is thus not a fragment of QPDAG. We can nevertheless
recover it with previous definitions.
Definition 1.3.26 (Boolean expression diagrams). A GRDAGφ is aBoolean expres-
sion diagram (BED) if and only if Ops(φ) ⊆ BB

2 , φ satisfies weak and exclusive
decision [Def. 1.3.23], and is ordered by some strict order.

BED is the restriction of GRDAG to Boolean expression diagrams.

A simple example of a BED can be found in Figure 1.9.
Another language is that of interval diagrams [ST98], also defined as an exten-

sion of OBDDs. It is a sublanguage of OBDD, the edges being labeled by intervals
of integers. We do not define them formally here, because it would require specific
definitions (there are indeed restrictions on the outgoing edges of a node). This
language is nonetheless encompassed by the language of set-labeled diagrams that
we introduce later in this work [Chapter 7].

Strong Ordering
O - DDG is quite general, but this definition of ordering does not allow canonicity,
since the order does not constrain the use of pure conjunctive nodes. Fargier and
Marquis [FM06] thus defined a refinement of this language, allowing only tree
orders.
Definition 1.3.27 (Tree order). Let < be a strict order on some set X . < is a tree
order if and only if the graph ⟨X,<min⟩ is a tree, with<min being the smallest binary
relation (w.r.t. inclusion) the transitive closure of which is <.

Tree orders are thus midway between partial strict orders and total strict orders,
since they refine strict orders, and are refined by total strict orders. For example,
the strict order <a defined on {x, y, z, t} by x <a y <a z and y <a t is a tree
order, while <b defined by x <b y <b z and t <b y is not. Let us now impose tree
ordering on a decision graph’s variables.
Definition 1.3.28 (Strong ordering). Let < be a tree order on some V ⊆ V; a
GRDAG φ is strongly ordered by < if and only if

• φ is ordered by < (which implies that Scope(φ) ⊆ V );

• for each decision node N on some variable y ∈ V of φ, if there exists x ∈ V

35



Chapter 1 Knowledge Compilation

such that x < y, then N has an ancestor which is a decision node on x.

SO - DDG< is the restriction of DDG to graphs strongly ordered by <. SO - DDG is
the union of all SO - DDG<, for all possible tree order <.

SO - DDGSZE contains both AND/OR multivalued decision diagrams (AOMDDs)
[MD06] and tree-driven automata [FV04].

1.3.7 Closure Principles

Closure principles have been formally defined by Fargier and Marquis [FM08a].
They enable us to define new languages “above” an existing one, by allowing the
use of some operators not contained in the original language. We here slightly
extend their concepts to GRDAGs. We first need to consider proper formulæ.

Definition 1.3.29 (Proper formula). Let φ be a GRDAG, l a literal in φ with
Scope(l) = x, and Q a node labeled with a quantification on x.

We say that l is bound byQ if and only if there exists a path from the child of Q
to l containing no quantification on x.

We say that l is free if and only if there exists a path from the root to l containing
no quantification on x.

φ is said to be proper if and only if each of its literals is either free or bound
by exactly one quantification on x. GRDAGp is the restriction of GRDAG to proper
formulæ; QpPDAG is the restriction of QPDAG to proper formulæ.

Using only proper GRDAG sentences, we are sure that there is no literal that
depends on two different quantifiers, or is together free and bound. This simplifies
some operations, that would require such literals to be duplicated (for example,
during a conditioning operation, free literals have to be changed, but not bound
literals, raising problems if some literals fall under both qualifications).

Definition 1.3.30 (Closure of a language). Let L be a sublanguage of GRDAG, and ∆
a subset of Ops. The ∆-closure of L, denoted L[∆], is the sublanguage of GRDAGVL

the representation set of which is inductively defined as follows:

• if φ ∈ L, then φ ∈ L[∆];

• if ⊗ ∈ ∆ ∩BB2 , φl and φr are L-representations, then φl ⊗ φr ∈ L[∆];

• if ¬ ∈ ∆ and φ ∈ L, then ¬φ ∈ L[∆];

• if q ∈ ∆ ∩ {∃, ∀}, φ ∈ L, and x ∈ VL, then qx.φ ∈ L[∆].

Using closures is especially useful on incomplete languages, since it can allow
one to build a complete language while keeping the main operations tractable, as
we will see in Section 1.4.3. Following Fargier and Marquis [FM08b], we consider
the following closures: KROM - C[∨], HORN - C[∨], K/H - C[∨], and renH - C[∨].
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1.4 Compilation Map of Boolean Languages

This section sums up the knowledge compilation results known from the literature
about the various Boolean languages (i.e., languages with valuation set E = B)
introduced in the previous section. We start by presenting the queries and trans-
formations used to classify Boolean languages. They come from the knowledge
compilation map literature, with some modifications so that they fit our context
involving non-Boolean variables.

1.4.1 Boolean Queries and Transformations

Semantical Notions
This section formally extends some notions of logic (model, consistency, validity,
etc.) to Boolean functions in general.
Definition 1.4.1 (Model and countermodel). Let f be a Boolean function over V ⊆
V; a V -assignment #—v is a model (resp. countermodel) of f , denoted #—v |= f (resp.
#—v ̸|= f ), if and only if f( #—v ) = ⊤ (resp. f( #—v ) = ⊥).

The model set of f is denoted by Mod(f) ⊆ Dom(V ); its countermodel set is
denoted by Modc(f). Quite clearly, {Mod(f),Modc(f)} is a partition of Dom(V ).

We extend the definition of a model to every assignment #—x of variables from
any set X ⊆ V: denoting Y = V \ X , #—x is a model of f if and only if for
every Y -assignment #—y , f( #—x |V . #—y ) = ⊤. We also write #—x |= f , and extend
countermodels accordingly. Note that the model and countermodel sets still contain
only V -assignments.
Definition 1.4.2 (Consistency and validity). Let f be a Boolean function over V ⊆
V . f is consistent if and only if Mod(f) ̸= ∅. f is valid if and only if Modc(f) = ∅.

Definition 1.4.3 (Context). Let f be a Boolean function over V ⊆ V , x ∈ V be a
variable, and ω ∈ Dom(x). ω is said to be a consistent value of x in f if and only if
there exists a V ∪ {x}-assignment #—v such that #—v |x = ω and #—v |= f .

The set of all consistent values of x in f is called the context of x in f and is
denoted as Ctxtf (x).

Consistent values are sometimes called generalized arc consistent (GAC) or glob-
ally consistent in constraint programming [see e.g. LS06].
Proposition 1.4.4. Let f be a Boolean function over V ⊆ V . The following state-
ments are equivalent:

(1) f is consistent;

(2) ∃x ∈ V,Ctxtf (x) ̸= ∅;

(3) ∀x ∈ V,Ctxtf (x) ̸= ∅.
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Proof. We prove that (2) =⇒ (1) =⇒ (3) =⇒ (2).

• (2) =⇒ (1): Let x ∈ V; suppose that Ctxtf (x) ̸= ∅. Let ω ∈ Ctxtf (x);
by definition of the context, there exists a V ∪ {x}-assignment #—v such that
#—v |x = ω and #—v |= f . Obviously, #—v |V |= f , and thus Mod(f) ̸= ∅: f is
consistent.

• (1) =⇒ (3): Suppose that f is consistent. Let x ∈ V; we show that
Ctxtf (x) ̸= ∅. Let #—v be a model of f .

– If x ∈ V , by definition, #—v |x is a consistent value of x in f , and thus
Ctxtf (x) ̸= ∅.

– If x /∈ V , then let ω ∈ Dom(x) and let #—x be the {x}-assignment such
that #—x |x = ω. It holds that f( #—v . #—x ) = ⊤, since f( #—v ) = ⊤ and x /∈ V
(and by convention [§ 1.2.1], f( #—v . #—x ) = f( #—v . #—x |V ) = f( #—v )).
All assignments #—y from V \ X = ∅ verify f

(
( #—v . #—x )|V . #—y

)
= ⊤,

hence #—v . #—x |= f holds; ω is a consistent value of x in f , and thus
Ctxtf (x) ̸= ∅.

Consequently, for any x ∈ V , it holds that Ctxtf (x) ̸= ∅.

• (3) =⇒ (2): This is trivial (since V ̸= ∅).

This proves by transitivity the equivalence of the three statements.

Definition 1.4.5 (Entailment and equivalence). Let f, g be Boolean functions. f
entails g, denoted f |= g, if and only if every model of f is a model of g. f is
equivalent to g, denoted f ≡ g, if and only if both f |= g and g |= f hold.

All the preceding notions can also be simply defined on representations, that
is, on elements of some language, using the interpretation function.

Definition 1.4.6. Let L be a Boolean representation language, and φ and ψ some
L-representations.

• A Scope(φ)-assignment #—v is a model (resp. a countermodel) of φ, denoted
#—v |= φ (resp. #—v ̸|= φ), if and only if it is a model (resp. countermodel) ofJφK.

• We write Mod(φ) = Mod(JφK) and Modc(φ) = Modc(JφK).
• φ is consistent if and only if JφK is consistent.

• φ is valid if and only if JφK is valid.

• φ |= ψ if and only if JφK |= JψK.

• φ ≡ ψ if and only if JφK ≡ JψK.
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• A consistent value of variable x in φ is defined as a consistent value of x inJφK. We write Ctxtφ(x) = CtxtJφK(x).
We now introduce operations on Boolean functions The following definitions

pertain to operations on Boolean functions, to wit, application of binary operators,
negation, quantification, and restriction.
Definition 1.4.7 (Binary operations). Let ⊗ ∈ BB

2 be any binary operator on B,
and f, g be Boolean functions over Vf ⊆ V and Vg ⊆ V , respectively. The Boolean
function f ⊗ g is defined on variables from Vf ∪ Vg by ∀ #—x ∈ Dom(Vf ∪ Vg), (f ⊗
g)( #—x ) = f( #—x |Vf )⊗ g( #—x |Vg).

Definition 1.4.8 (Negation). Let f be a Boolean function over V ⊆ V; the Boolean
function ¬f is defined on variables from V by ∀ #—x ∈ Dom(V ), (¬f)( #—x ) = ¬f( #—x ).

Definition 1.4.9 (Quantification). Let f be a Boolean function over V ⊆ V , and
X ⊆ V be a set of variables. The existential quantification of f by X (also called
forgetting ofX in f and existential projection of f on V \X), denoted ∃X.f , is the
Boolean function defined on Y = V \X by

∀ #—y ∈ Dom(Y ), (∃X.f)( #—y ) = ⊤ ⇐⇒ ∃ #—x ∈ Dom(X), f( #—y . #—x |V ) = ⊤.

The universal quantification of f byX (also called ensuring ofX in f and universal
projection of f on V \X), denoted ∀X.f , is the Boolean function defined on Y =
V \X by

∀ #—y ∈ Dom(Y ), (∀X.f)( #—y ) = ⊤ ⇐⇒ ∀ #—x ∈ Dom(X), f( #—y . #—x |V ) = ⊤.

Proposition 1.4.10. Let f be a Boolean function over V ⊆ V . f is consistent if and
only if ∃V.f is consistent. f is valid if and only if ∀V.f is consistent.

Proof. Scope(∃V.f) = ∅; ∃V.f is consistent if and only if (∃V.f)( #—∅) = ⊤.
By definition of the existential quantification, this condition is equivalent to ∃ #—v ∈
Dom(V ), f( #—v ) = ⊤, which is the definition of f ’s consistency.

Similarly, Scope(∀V.f) = ∅. ∀V.f is consistent if and only if (∀V.f)( #—∅) =
⊤. This holds if and only if ∀ #—v ∈ Dom(V ), f( #—v ) = ⊤, i.e., if and only if f is
valid.

Definition 1.4.11 (Restriction). Let f, g be Boolean functions over Vf ⊆ V and
Vg ⊆ V , respectively. The restriction of f to g, denoted f|g, is the Boolean function
defined on Y = Vf \ Vg by f|g = ∃Vg.(f ∧ g).

Let V ⊆ V and let #—v be a V -assignment. The restriction of f to #—v , denoted
f| #—v , is the Boolean function defined on Y = Vf \ V by f| #—v ( #—y ) = f( #—y . #—v ).

Note that the restriction to an assignment can be seen as a special case of restriction
to a function. The restriction operation is useful to compose two functions or to fix
the values of some variables. We also write f|x=ω to denote the restriction of f to
the assignment of x to ω.
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Proposition 1.4.12 (Shannon decomposition). Let f be a Boolean function and x ∈
Scope(f). The following properties hold:

• ∃x.f ≡
∨

#—x∈Dom({x}) f| #—x ;

• ∀x.f ≡
∧

#—x∈Dom({x}) f| #—x .

Proof. LetZ = Scope(f)\{x}, and #—z aZ-assignment. Let us prove that ∃x.f ≡∨
#—x∈Dom({x}) f| #—x :

(⇒) Suppose that (∃x.f)( #—z ) = ⊤. This means there exists an {x}-assignment
#—x such that f( #—z . #—x ) = ⊤, i.e. f| #—x ( #—z ) = ⊤. It is hence obvious that
(
∨

#—x∈Dom({x}) f| #—x )(
#—z ) = ⊤.

(⇐) Suppose that (∃x.f)( #—z ) = ⊥. Then any {x}-assignment #—x verifies f( #—z .
#—x ) = ⊥, and therefore f| #—x ( #—z ) = ⊥. Consequently, it is clear enough that
(
∨

#—x∈Dom({x}) f| #—x )(
#—z ) = ⊥.

The proof of ∀x.f ≡
∧

#—x∈Dom({x}) f| #—x is dual from the previous one:

(⇒) Supposing (∀x.f)( #—z ) = ⊤, any {x}-assignment #—x verifies f( #—z . #—x ) = ⊤,
so f| #—x ( #—z ) = ⊤. Hence (

∧
#—x∈Dom({x}) f| #—x )(

#—z ) = ⊤.

(⇐) Supposing (∀x.f)( #—z ) = ⊥. Then there is a {x}-assignment #—x such that
f( #—z . #—x ) = ⊥, i.e., f| #—x ( #—z ) = ⊥, hence (

∧
#—x∈Dom({x}) f| #—x )(

#—z ) = ⊥.

Queries on Boolean Languages

Let us now define the standard queries used to compare the efficiency of Boolean
languages. Introduced by Darwiche and Marquis [DM02], they have been general-
ized to representation languages by Fargier and Marquis [FM09], from whom we
adapted the following definitions.

We identified three types of query; let us begin with the first category, which
contains queries common to all Boolean languages.
Definition 1.4.13 (General queries). Let L be a Boolean representation language.

• L satisfies CO (consistency) (resp. VA, validity) if and only if there exists a
polytime algorithm mapping every L-representation φ to 1 if φ is consistent
(resp. valid), and to 0 otherwise.

• L satisfiesMC (model checking) if and only if there exists a polytime algorithm
mapping every L-representation φ and every assignment #—v of the variables in
Scope(φ) to 1 if #—v |= φ, and to 0 otherwise.

• L satisfies EQ (equivalence) (resp. SE, sentential entailment) if and only if
there exists a polytime algorithm mapping every couple of L-representations
⟨φ,ψ⟩ to 1 if φ ≡ ψ (resp. φ |= ψ), and to 0 otherwise.
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These queries are straightforward extensions of the classical definitions [DM02]
to languages on non-Boolean variables. Thanks to their simple definitions, these
queries apply to any Boolean language. This is due to the fact that, contrary to the
next queries, they have simple inputs and output, raising no questions about how
these are represented.

The queries in the second category are problematic in this regard: their output is
still simple (Boolean), but their parameters are “complex” objects, namely clauses
and terms—that are only defined as GRDAGs. For this reason, we chose to define
these queries on GRDAG sublanguages only.
Definition 1.4.14 (Queries with complex parameters). Let L be a sublanguage of
GRDAG.

• L satisfies CE (clausal entailment) if and only if there exists a polytime algo-
rithm mapping every L-representation φ and every clause γ in L to 1 if φ |= γ,
and to 0 otherwise.

• L satisfies IM (implicant checking) if and only if there exists a polytime algo-
rithm mapping every L-representation φ and every term γ in L to 1 if γ |= φ,
and to 0 otherwise.

In this definition, φ and γ all are GRDAGs, and in particular, L-representations (of
the same L). If it were not the case, there would be expressivity problems, that could
complicate the reasons why a language supports these queries or not—whereas the
purpose of the map is to give insight about the intrinsic power of each language.
For instance, for NNFSBB to satisfy CE, the polytime algorithm must be able to decide
whether some NNFSBB -representation entails

[
x = ⊤

]
∨
[
y = ⊥

]
, but not whether it

entails non-GRDAG “clauses” such as
[
x = y

]
∨
[
y = z

]
, which has a completely

different expressivity.
The queries in the third category have no complex parameters, but their output

(related to the notion of model set) is non-Boolean. We could not simply extend
these queries from the literature; indeed, the number of models being possibly infi-
nite, we could not consider counting or enumerating them. Regarding the “model
enumeration” query, we had to decide on an arbitrary representation of the model
set. We chose to require the model set to be in the form of a DNF, since this is a
natural way of representing continuous sets of assignments—they are called union
of boxes in this context. For the “model counting” query, this is harder; we thought
of using the characteristic size of the minimal equivalent DNF-representation, but
proving minimality is not simple. In the end, we chose to keep the original mean-
ing of “counting”, and output the number of models if it is finite, and ∞ otherwise.
Definition 1.4.15 (Queries with complex output). Let L be a sublanguage of GRDAG,
over the set of variables VL.

• L satisfies ME (model enumeration) if and only if there exists a polyno-
mial P (·, ·) and an algorithm mapping every L-representation φ to a DNFVL-
representation ψ of JφK in time P (∥φ∥, ∥ψ∥).
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• L satisfies MEc (counter-model enumeration) if and only if there exists a poly-
nomial P (·, ·) and an algorithm mapping every L-representation φ to a DNFVL-
representation ψ of ¬JφK in time P (∥φ∥, ∥ψ∥).

• L satisfies CT (model counting) if and only if there exists a polytime algo-
rithm mapping every L-representation φ to |Mod(φ)| if it is finite, and to ∞
otherwise.

Once again, these queries are only defined on sublanguages of GRDAG, because of
expressivity issues. Indeed, we want a DNFVL-representation of φ to exist, yet this
is not guaranteed if φ is not a GRDAG. Consider for instance the Boolean function
f defined on real variables x and y by f(x, y) = ⊤ ⇐⇒ x = y; there exists
no GRDAG-representation of f , and hence no DNF-representation. To be able to use
DNF to represent the model set, we have to restrict the input language to a language
with expressivity similar to DNF, which is the case of GRDAG.

Before going on with transformations, let us note that the queries defined here
are classical ones; we introduce new queries later in this work [§ 3.3.3].

Transformations on Boolean Languages
We now present the standard transformations on Boolean languages, also intro-
duced by Darwiche and Marquis [DM02] and generalized to representation lan-
guages by Fargier and Marquis [FM09].
Definition 1.4.16 (Transformations). Let L be a Boolean representation language,
over the set of variables VL.

• L satisfies CD (conditioning) if and only if there exists a polytime algorithm
mapping every L-representation φ and every assignment #—v of variables from
VL to an L-representation of the restriction JφK| #—v of JφK to #—v .

• L satisfies FO (forgetting) (resp. SFO, single forgetting) if and only if there
exists a polytime algorithm mapping every L-representation φ and every set
(resp. singleton) X ⊆ VL to an L-representation of ∃X.JφK.

• L satisfies EN (ensuring) (resp. SEN, single ensuring) if and only if there exists
a polytime algorithm mapping every L-representation φ and every set (resp.
singleton) X ⊆ VL to an L-representation of ∀X.JφK.

• L satisfies ∧C (closure under ∧) (resp. ∨C, closure under ∨) if and only if there
exists a polytime algorithm mapping every finite set Φ of L-representations to
an L-representation of

∧
φ∈ΦJφK (resp.

∨
φ∈ΦJφK).

• L satisfies ∧BC (closure under binary ∧) (resp. ∨BC, closure under binary ∨)
if and only if there exists a polytime algorithm mapping every couple of L-
representations ⟨φ,ψ⟩ to an L-representation of JφK ∧ JψK (resp. JφK ∨ JψK).

• L satisfies ¬C (closure under ¬) if and only if there exists a polytime algorithm
mapping every L-representation φ to an L-representation of ¬JφK.
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SO - DDGSBB

.

BDDSBB

.

DNFSBB

.

FBDDSBB

.

d - DNNFSBB

.

NNFSBB

.

DNNFSBB

.
OBDDSB<,B

.

CNFSBB

.

OBDDSBB

.

DDGSBB

.

HORN - C[∨]

.

IP

.

KROM - C[∨]

.

PI

.

renH - C[∨]

.

K/H - C[∨]

.

O - DDGSBB

.

DGSBB

.

Figure 1.10: Succinctness of some NNFSBB fragments. On an edge linking L1 and
L2, an arrow pointing towards L1 means that L1 ⩽s L2. If there is no symbol on L1’s
side (neither an arrow nor a circle), it means that L1 ⩽̸s L2. If there is a circle on L1’s
side, it means that it is unknown whether L1 ⩽s L2 or L1 ⩽̸s L2 holds. Relations
deducible by transitivity are not represented, which means that two fragments not
being ancestors to each other are incomparable with respect to succinctness.

The only transformation that was problematic to generalize to non-Boolean vari-
ables is the first one. In its original definition [DM02], conditioning is a “restriction
to a term”; but since literals were of the form “x = ⊤” or “x = ⊥”, it boils down
to a restriction to an assignment. When generalizing conditioning to Boolean lan-
guages with non-Boolean variables, we had the choice between extending the “term
restriction” definition or keeping the “assignment restriction” usage. We chose the
second alternative (which has the advantage of having no representation-dependant
parameter—see discussion of Definition 1.4.14), and extended the original defini-
tion into another transformation, explicitly called term restriction [see § 3.3.3].

1.4.2 Succinctness Results

Figure 1.10 presents succinctness results about some of the Boolean languages we
presented, in the form of a succinctness graph.

Theorem 1.4.17. The succinctness relations in Figure 1.10 hold.

Proof. The results come from various papers [DM02, FM08b, FM06].
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L CO VA CE IM EQ SE CT ME

NNFSBB ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNFSBB

√
◦

√
◦ ◦ ◦ ◦

√

CNFSBB ◦
√

◦
√

◦ ◦ ◦ ◦
PI

√ √ √ √ √ √
◦

√

IP
√ √ √ √ √ √

◦
√

KROM - C
√ √ √ √ √ √

◦
√

KROM - C[∨]
√

◦
√

◦ ◦ ◦ ◦
√

HORN - C
√ √ √ √ √ √

◦
√

HORN - C[∨]
√

◦
√

◦ ◦ ◦ ◦
√

K/H - C
√ √ √ √ √ √

◦
√

K/H - C[∨]
√

◦
√

◦ ◦ ◦ ◦
√

renH - C
√ √ √ √ √ √

◦
√

renH - C[∨]
√

◦
√

◦ ◦ ◦ ◦
√

DNNFSBB
√

◦
√

◦ ◦ ◦ ◦
√

d - NNFSBB ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d - DNNFSBB

√ √ √ √
? ◦

√ √

DGSBB ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DDGSBB

√ √ √ √
◦ ◦

√ √

BDDSBB ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDDSBB

√ √ √ √
? ◦

√ √

O - DDGSBB
√ √ √ √

? ◦
√ √

O - DDGSB<,B
√ √ √ √

? ?
√ √

SO - DDGSBB
√ √ √ √

? ◦
√ √

SO - DDGSB<,B
√ √ √ √ √

?
√ √

OBDDSBB
√ √ √ √ √

◦
√ √

OBDDSB<,B
√ √ √ √ √ √ √ √

Table 1.1: Queries satisfied by fragments of NNFSBB . Meaning of symbols is as
follows:

√
means “satisfies”, ◦ means “does not satisfy, unless P = NP”, and ?

indicates an unknown result.

A succinctness graph allows one to quickly examine the relative succinctness
of a group of languages. Having identified the languages supporting their desired
operations, users just have to select those being as close to the root as possible. Of
course, when some “hard” operations are necessary, such as equivalence checking,
there is no choice but to select leaf languages.

1.4.3 Satisfaction of Queries and Transformations

Tables 1.1 and 1.2 show which queries and transformations are known to be satisfied
or not by the languages we presented.
Theorem 1.4.18. The results in Tables 1.1 and 1.2 hold.

Proof. The results come from various papers [DM02, FM08b, FM06].
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L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C
NNFSBB

√
◦

√ √ √ √ √ √

DNFSBB
√ √ √

•
√ √ √

•
CNFSBB

√
◦

√ √ √
•

√
•

PI
√ √ √

• • •
√

•
IP

√
• • •

√
• • •

KROM - C
√ √ √ √ √

! ! !
KROM - C[∨]

√ √ √
◦

√ √ √
•

HORN - C
√

•
√ √ √

! ! !
HORN - C[∨]

√
?

√
◦

√ √ √
•

K/H - C
√

•
√

◦ ◦ ! ! !
K/H - C[∨]

√
?

√
◦ ◦

√ √
•

renH - C
√

•
√

! ! ! ! !
renH - C[∨]

√
?

√
◦ ◦

√ √
◦

DNNFSBB
√ √ √

◦ ◦
√ √

◦
d - NNFSBB

√
◦

√ √ √ √ √ √

d - DNNFSBB
√

◦ ◦ ◦ ◦ ◦ ◦ ?
BDDSBB

√
◦

√ √ √ √ √ √

FBDDSBB
√

• ◦ • ◦ • ◦
√

OBDDSBB
√

•
√

• ◦ • ◦
√

OBDDSB<,B
√

•
√

•
√

•
√ √

Table 1.2: Transformations satisfied by fragments of NNFSBB . Meaning of symbols
is as follows:

√
means “satisfies”, • means “does not satisfy”, ◦ means “does not

satisfy, unless P = NP”, ! indicates that the transformation is not always feasible
within the fragment, and ? indicates an unknown result.

This classical presentation of the knowledge compilation map is meant to be
easy to read; checking whether a language satisfies some given query or transfor-
mation is immediate, as is finding the set of languages that satisfy some given query
or transformation. To achieve this, tables do not provide precise information about
the complexity class of each problem, but rather only indicate whether the query or
transformation is satisfied.

***

We have presented a state-of-the-art knowledge compilation map of graph-
based Boolean languages. Let us now introduce a few non-Boolean languages.

1.5 Non-Boolean Languages

In this section, we take a glimpse at non-Boolean representation languages, de-
signed to compactly express functions with a non-Boolean output: EL ̸= B. Note
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that the “non-Boolean” character of a language only concerns the target set of its
interpretation domain, not necessarily its variables. We do not develop this section
as much as we developed the Boolean languages portion, for several reasons: much
fewer non-Boolean languages have been defined, there are fewer applications using
them, and there are fewer works about their knowledge compilation properties.

1.5.1 ADDs

As it was hinted in § 1.1.2.1, the basic principle of OBDDs has been adapted to
non-Boolean functions. The first such extension5 is due to Clarke et al. [CF+93]
who called it multi-terminal binary decision diagrams (MTBDDs). The difference
between OBDDs and MTBDDs is basically an increase in the number of leaves, so
that every possible output of the function corresponds to a unique leaf. Obviously,
there has to be a finite number of leaves: the interpretation domain of MTBDDs is
restricted to DB,S , with S a finite subset of R.

The idea of MTBDDs was extended by Bahar et al. [BF+97], to express func-
tions taking their values on (finite) algebraic structures. Let us present their more
general definition.
Definition 1.5.1 (ADD). Let S = ⟨S,O,D⟩ be an algebraic structure, composed of
a finite carrier S, a set of operations O and a set of distinguished elements D ⊆ S.
An algebraic decision diagram (ADD) on S is a rooted DAG meeting the following
requirements:

• each leaf is labeled with an element of S;

• each internal nodeN is labeled with a variable from B (denoted Var(N)), and
has exactly two outgoing edges, respectively labeled with ⊤ and ⊥;

• it is ordered: there exists a total strict order< of the mentioned variables such
that for each couple of distinct internal nodes ⟨N,N ′⟩, if N ′ is a descendant
of N , then Var(N) < Var(N ′).

The semantics of an ADD φ is defined inductively as follows.

• If the root of φ is a leaf, with label s, then Scope(φ) = ∅, and JφK is the
constant function returning s.

• If the root of φ is an internal node, denoting x its label variable, φ⊤ the child
pointed by its ⊤-outgoing edge, and φ⊥ the child pointed by its ⊥-outgoing
edge, then Scope(φ) = Scope(φ⊥)∪Scope(φ⊤)∪{x}, and for any Scope(φ)-
assignment #—v ,

JφK( #—v ) =

{Jφ⊤K( #—v ) if #—v |x = ⊤,Jφ⊥K( #—v ) if #—v |x = ⊥.

5Ignoring the fact that the original definition of MDDs [SK+90] also formally allowed multiple
leaves, since this feature appears to not have been used by the community.
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The ADD language is the union of all representation languages ⟨DB,S ,RS , J·K⟩,
with RS the set of all ADDs on S, for any algebraic structure S.
The authors use ADDs to represent matrices over specific algebraic structures,
namely quasirings and semirings. They present an algorithm returning in poly-
time an ADD representing the multiplication of two matrices expressed as ADDs,
and apply it to the search of shortest paths. In the same way as OBDDs, ADDs are
canonical structures, which allows a very efficient equivalence checking.

1.5.2 AADDs
Sanner and McAllester [SM05] noticed that ADDs are not efficient in representing
functions involving additions or multiplications. Indeed, contrary to disjunctions
and conjunctions, these operations can highly increase the number of possible out-
puts, and hence the number of leaves. Using ADDs to perform such operations
can lead to structures of size exponential in the size of the initial ones. Yet, these
operations are often used when reasoning with probabilities.

The authors introduce affine algebraic decision diagrams (AADDs) to tackle
this problem. The idea is to associate an additive and multiplicative value with
each edge to “factorize” leaves.
Definition 1.5.2 (AADD). An affine algebraic decision diagram (AADD) φ is an
extended ADD: each edge E in φ is associated with a couple ⟨cE , bE⟩ of real values
from [0, 1]. It moreover has a unique leaf, labeled with 0.

The semantics of an AADD φ is defined inductively as follows.

• If the root ofφ is the leaf, then Scope(φ) = ∅, and JφK is the constant function
returning 0.

• If the root ofφ is an internal node, denoting x its label variable,E⊤ (resp. E⊥)
its ⊤-outgoing edge (resp. ⊥-outgoing edge), andφ⊤ (resp. φ⊥) the subgraph
rooted at Dest(E⊤) (resp. at Dest(E⊥)), then Scope(φ) = Scope(φ⊥) ∪
Scope(φ⊤) ∪ {x}, and for any Scope(φ)-assignment #—v ,

JφK( #—v ) =

{
cE⊤ + bE⊤ × Jφ⊤K( #—v ) if #—v |x = ⊤,
cE⊥ + bE⊥ × Jφ⊥K( #—v ) if #—v |x = ⊥.

The AADD language is the representation language ⟨DB,[0,1],R, J·K⟩, with R the
set of all AADDs.

Note that even if AADDs are based on ADDs, AADD is not a sublanguage of ADD,
their interpretation function being completely different. Using the definition we
provided, AADDs are not canonical, but it is possible to obtain canonicity by im-
posing some restricting properties to the additive and multiplicative coefficients,
creating normalized AADDs [see SM05 for details].

As shown by the authors, AADDs are spatially much more efficient than ADDs.
In addition, the worst-case complexity of the “apply” operation (which is the basis

47



Chapter 1 Knowledge Compilation

of the sum, product, etc. of two decision diagrams) on AADDs is only within
a multiplicative constant of that of ADDs. This results in very good operational
performance, since AADDs can be exponentially smaller than ADDs.

The language of edge-valued binary decision diagrams (EVBDDs), introduced
by Lai and Sastry [LS92], can be seen as a restriction of AADD, in which no mul-
tiplicative coefficient is allowed, and ⊥-labeled edges are always associated with
a zero additive coefficient. Multiplicative coefficients were added by Tafertshofer
and Pedram [TP97], yielding factored EVBDDs. Let us also mention the language
of semiring-labeled decision diagrams (SLDD) [Wil05], designed for the compila-
tion of weighted constraint networks; it differs from AADDs in that variables are
enumerated rather than Boolean, and there is only one coefficient per edge, which
is taken from a semiring. A given path in an SLDD corresponds to an assignment
of the variables and to a value, which is the semiring product of all the coefficients
encountered along the path.

1.5.3 Arithmetic Circuits
Arithmetic circuits [Dar03] are similar to Boolean NNFs, but apply this mechanism
to numerical variables.
Definition 1.5.3. An arithmetic circuit (AC) is a rooted DAG, such that:

• its leaves are labeled with a numeric constant c or with a variable x ∈ V[0,1];

• its internal nodes are labeled with a numerical operator, either + or ×.

The semantics of an arithmetic circuitφ is the function fromDV[0,1],R inductively
defined as follows.

• If the root of φ is a leaf of label constant c, then Scope(φ) = ∅, and JφK is
the constant function returning c.

• If the root of φ is a leaf of label variable x, then Scope(φ) = {x}, and JφK is
the function x 7→ x.

• If the root N of φ is an internal node, denoting ⊗ its label operator, then
Scope(φ) =

∪
E∈Out(N) Scope(Dest(E)), and for any Scope(φ)-assignment

#—v , JφK( #—v ) =
⊗

E∈Out(N)JDest(E)K( #—v ).

The AC language is the representation language ⟨DV[0,1],R,R, J·K⟩, with R the
set of all arithmetic circuits.

ACs have been designed to represent Bayesian networks, a kind of probability dis-
tribution modeled by a directed acyclic graph [Pea88]. Indeed, a Bayesian network
can be expressed as a polynomial of degree 1 over variables from V[0,1], which
is straightforward to convert into an arithmetic circuit. Having been created for
this specific application, arithmetic circuits always represent functions over [0, 1]
variables in the literature. We decided to restrict the interpretation domain of AC
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accordingly, even if in the original work of Darwiche [Dar03], nothing prevents the
variables in an arithmetic circuit from having any real-valued domain.

Several probabilistic queries on Bayesian networks boil down to computing
some partial derivative of its polynomial representation. Now, differentiating a
polynomial expressed as an arithmetic circuit is easy (linear in the size of the struc-
ture), which explains the interest of this compilation.

1.5.4 A Unified Framework: VNNF

The VNNF fragment (VNNF stands for valued negation normal form) has been in-
troduced by Fargier and Marquis [FM07] as a general framework for the represen-
tation of non-Boolean functions. It subsumes all languages we presented in this
section, and also NNF, constraint networks [see Section 1.6.1], and various frame-
works extending constraint networks with valuations. One of the interests of this
generalization is the possibility to identify some common behaviour and structure
among these different formalisms, and to classify them with respect to their opera-
tional efficiency—it is the first step towards a knowledge compilation map of non-
Boolean languages. VNNF has inspired our definition of GRDAG, in that we wanted
to define a common formalism to encompass all graph-based Boolean languages.

We do not give the definition of VNNFs; we only emphasize the main differ-
ences between VNNFs and GRDAGs. The first difference is of course that the
target set of the interpretation domain of VNNFs is not Boolean: EVNNF ̸= B. The
authors define the target set as a valuation structure, i.e. an ordered set with a least
element and a greatest element. The operators with which internal nodes are la-
beled are of course operators on this valuation structure; however, not any operator
can be used (there are restrictive conditions on operators, they must for example be
binary and commutative).

The second main difference holds on leaves: in VNNFs, they are labeled with
functions from the interpretation domain. These functions are called “local func-
tions”. Of course, if a local function is hard to compute, the semantics of the overall
VNNF is also hard to handle. In GRDAGs, leaves are also labeled with some sort
of local functions—but only very specific local functions can be used, namely con-
stants or functions of the form x 7→

[
x ∈ A

]
.

We do not detail the VNNF framework any further; let us just emphasize that
it enables one to define quite general queries and transformations (such as partial
consistency, optimal satisfaction, quantification with respect to any operator), and
to extend some structural notions such as decomposability or determinism.

1.6 Compiling

After this rather theoretical presentation of knowledge compilation, including nu-
merous examples of representation languages and their compilation properties, the
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question of practical use arises. From a theoretical point of view, the online manip-
ulation of compiled forms is simple: it consists in combining elementary queries
and transformations. But how are compiled forms obtained? What does the com-
pilation step consist in? This section aims at answering these questions, first by
presenting compilation techniques, and then by listing some state-of-the-art com-
pilers implementing these techniques.

1.6.1 Compilation Methods

Let us take the example of a person—say, Alice—who needs an autonomous system
to run a program, requiring the online solving of a reasoning problem. She decides
to use knowledge compilation, after having noticed that the problem can be viewed
as a large fixed knowledge base on which elementary operations are performed.
Using the knowledge compilation map, she identifies the target Boolean language
L that fits her application the best. She now needs to compile her problem into an
L-representation.

Being meant to be efficiently manipulable by computers, target compilation lan-
guages are generally not easy to handle “by hand”. Darwiche and Marquis [DM02]
have distinguished two categories of languages, those that are designed for humans
to encode knowledge directly, and those that are designed to be tractable.6 It is
very likely that Alice’s reasoning problem is represented by means of a “natural”
or “human-manipulable’ language. The compilation step, in practice, is hence the
translation from this natural language into the identified target compilation lan-
guage.

Of course, this compilation step depends on the two concerned languages; but
this does not prevent us from identifying general compilation methods. To do this,
we consider a unique encoding language, general enough to encompass most prac-
tical uses, namely the constraint network.
Definition 1.6.1. A constraint network (CN) is a couple Π = ⟨V,C ⟩, where V ⊆
V is a set of variables (denoted as Scope(Π)) and C is a set of constraints. Each
constraint C ∈ C has an associated scope, denoted as Scope(C), and consists of a
set of Scope(C)-assignments: these are the assignments allowed by C.

A solution of Π is a V -assignment #—v compatible with every constraint:

∀C ∈ C , #—v | Scope(C) ∈ C.

The set of all solutions of Π is called its solution set, and is denoted Sol(Π).

This definition is quite generic; in particular, there are various ways of expressing
constraints. The most direct way is to explicitly enumerate the allowed tuples—
this is of course only possible when variables in the scope have a finite domain.

6They use the words representation languages for the former and target compilation languages
for the latter—we do not use this terminology in this thesis, since our definition of representation
language encompasses the two categories.
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The most natural way is to directly use high-level functions and relations over the
variables, leading to constraints such as x = y, z → x ∧ y (on Boolean vari-
ables),7 3x + 2y > z (on numeric variables), or even global constraints such as
alldiff(x1, . . . , xk), which means “variables x1, . . . , xk have pairwise distinct val-
ues”. The problem of answering the question “does Π have at least one solution?”
is a fundamental problem in artificial intelligence, called the constraint satisfaction
problem (CSP).8

Constraint networks are a very natural way to express a knowledge base, and
thus a Boolean function (identifying the solutions of a CN with the models of a
Boolean function). We now study methods to translate a constraint network into a
Boolean language.

Combination of Small Structures

The classical way of compiling a constraint network into some Boolean language
is often called bottom-up fashion. It consists in combining “elementary” represen-
tations, applying operator-based transformations, such as ∧BC (conjunction) or ¬C
(negation). For example, the constraint (x ∧ y) → z can be compiled by applying
the conjunction operator to the L-representations of

[
x = ⊤

]
and

[
y = ⊤

]
, then

applying the implication operator to the result and the L-representation of
[
z = ⊤

]
.

Once each constraint has been compiled, a representation of the whole CN can be
obtained by conjoining compiled forms of all constraints.

Of course, this method does not work with just any target language; the operator
application must be tractable enough for the compiled form not to inflate exponen-
tially during construction. The bottom-up fashion is thus typically used to compile
decision diagrams [§ 1.3.5], as shown for example by Bryant [Bry86] on OBDDs,
Srinivasan et al. [SK+90] on MDDs, Gergov and Meinel [GM94] on FBDDs, or
Vempaty [Vem92] on finite-state automata.

With well-chosen target languages, this method has the advantage of being fast.
It nonetheless has a serious drawback: during construction, the temporary compiled
forms can be much larger than the final one. In case the available memory is not
sufficient to contain all intermediate structures, compilation fails—even if the final
compiled form would have been small enough.

Solver Tracing

Another approach is to exploit the relationship between the search trace of a prob-
lem solving and the representation of this problem using a compilation language.
This idea has lead to the “DPLL with a trace” algorithm, originated in a work
by Huang and Darwiche [HD04], and further refined by Wille, Fey, and Drechsler
[WFD07] and Huang and Darwiche [HD05a]. The DPLL algorithm [DLL62] is a

7Constraint networks can thus be used to represent knowledge bases consisting of logic formulæ.
8The “constraint network” terminology is sometimes used to refer to binary constraints only.

There is no such restriction in our definition—we use “constraint network” to refer to the structure
associated with a CSP, following for example Lecoutre and Szymanek [LS06].
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seminal method to check the consistency of a CNF. Roughly speaking, it works re-
cursively, by selecting a variable and making a case analysis on its value, based on
the fact that the formula is satisfiable if and only if at least one of the cases results
in a consistent formula.

Huang and Darwiche [HD05a] remarked that the search tree of the DPLL algo-
rithm, extended so that it enumerates all models of the formula rather than stopping
when the first is found, corresponds exactly to a non-reduced FBDD. They adapted
their algorithm so that it can also compile OBDDs and d-DNNFs. This technique is
not limited to Boolean languages; any solver using branching can be used to com-
pile decision diagrams. It has notably been adapted to the compilation of MDDs
[HH+08], and was proposed by Wilson [Wil05] for the compilation of SLDDs.
Contrary to the bottom-up fashion, this top-down construction does not generate
intermediate structures that are larger than the final one. It is however generally
slower, since it needs to explore the whole search tree and enumerate solutions.
This drawback can be limited by the use of caching, that can avoid equivalent sub-
problems to be explored multiple times.

Approximate Compilation
A common practical problem with knowledge compilation is the size of the com-
piled form; even when using the most appropriate language with respect to the
needed operations, the available memory of embedded systems may not be suffi-
cient. O’Sullivan and Provan [OP06] proposed a method to reduce the size of a
compiled form, by considering only the most interesting solutions.

The idea is to associate a valuation with each solution, representing its likeliness
(such as a probability: the closer to 1 it is, the more interesting the solution is), and
to keep in the compiled form only solutions the value of which is greater than a
given threshold, fixed beforehand. Considering the value of a set of solutions to
be the sum of the solutions’ values, we can calculate the value vc of the complete
compiled formφc (containing all the possible solutions), and the value vp of a partial
compilation φp (containing all solutions exceeding the threshold).

The vp/vc ratio is called the valuation coverage ratio, representing the propor-
tion of “good” solutions covered by the partial compiled form. The ∥φp∥/∥φc∥ ratio
is the memory reduction ratio, representing the proportion of space the partial com-
pilation allows to be saved. Thanks to these two ratios, it is possible to determine
the quality of an approximate compilation, and choose the threshold accordingly.

Iterative Compilation
The “approximate compilation” idea has been further improved by Venturini and
Provan [VP08a], who proposed algorithms (for languages IP and DNNF) that com-
pute partial solutions, that is, incomplete assignments of the variables. These so-
lutions are then iteratively refined, by completing the assignments, while making
sure that the valuation of each partial solution always remains greater than a given
threshold. The final compilation structure thus contains all and only the preferred
models of the initial function.
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1.6.2 Existing Compilers: Libraries and Packages
This section quickly surveys existing compilers (some being unavailable to the pub-
lic) for a number of languages.

BDDs, ADDs, and AADDs
There exists a decent number of libraries providing functions to manipulate Boolean
OBDDs, for various programming languages. Let us cite ABCD [Bie00], BuDDy
[Lin02], JDD [Vah03], JavaBDD [Wha07], and Crocopat [Bey08]. One of them,
CUDD [Som05], is quite complete (all classic operations mentioned in the knowl-
edge compilation map [§ 1.4.1] are implemented), and widely used by the commu-
nity. It also allows the manipulation of ADDs.

Sanner and McAllester [SM05] have implemented an AADD compiler, most
likely based on the combination of small AADDs to which algebraic operations
are applied, since the “operation applying” algorithm is extensively described in
the paper. It was however never publicly released.

DNNFs
A d - DNNFSBB compiler, C2D, has been implemented by Darwiche [Dar04]; it is
available online. Let us mention also that the solver trace compilation method
[§ 1.6.1.2] can be used to compile Boolean d-DNNFs [HD05a].

There is no known compiler able to build “pure”, non-deterministic Boolean
DNNFs; it would be quite interesting to have one, since DNNFSBB is strictly more
succinct than d - DNNFSBB , and supports a number of important operations.

MDDs
Vempaty [Vem92] has implemented a CN compiler able to build finite-state au-
tomata (which are similar to MDDs). It works by bottom-up fashion, using a CSP
solver to enumerate the solutions of each constraint, combine them into elementary
automata, then conjoin all these elementary automata using a conjunction operation.
A compiler relying on this approach has been implemented and made available by
Amilhastre [Ami99].

Regarding decision graphs, Mateescu and Dechter [MD08] showed how one
can obtain AOMDDs by performing AND/OR searches on input constraint net-
works. This is very similar to the “DPLL with a trace” approach of Huang and Dar-
wiche [HD05a]. Another approach has been taken by Fargier and Vilarem [FV04],
who build tree-driven automata (that are equivalent to AOMDDs) in bottom-up
fashion, from tree-structured CSPs or hyper-trees of constraints.

Arithmetic Circuits
Darwiche [Dar03] presented various methods to compiles ACs, either using the
bayesian network’s jointree, or exploiting local structures, which turns out to be
more efficient when the jointree is large. His ACE compiler [DC07] is available
online.
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Figure 1.11: A Kripke structure represented as a graph. The worlds are the nodes
of the graph, the initial world is the leftmost one, the transitions are the edges, and
the labeling atoms are written inside the nodes.

1.7 Applications of Knowledge Compilation

Knowledge compilation has proven useful in a variety of domains, in particular
model checking, diagnosis, planning, and configuration. Applications of compila-
tion to planning are detailed in the next chapter [§ 2.3]. In this section, we present
the three other fields, with a particular emphasis on model checking, which is a
quite general domain, also used in planning [§§ 2.2, 2.3.3].

1.7.1 Model Checking
The model checking problem [see CGP99 for a survey, Mer01 for a tutorial, GV08
for a general perspective of the field] consists in determining whether a given prop-
erty holds in some model. For example, suppose one needs a model of a complex
factory machine. It is not possible to formally prove that the model is entirely cor-
rect, i.e., that it totally reflects the behavior of the machine in every possible case.
Still, it can be interesting to verify that the model works in some given cases; thus,
it is for example important that the model respects the following property: “each
time a failure is detected, an alarm is triggered”. Using model checking techniques,
it is possible to prove that this property holds on the model. Defining the expected
behaviour of some model with a set of properties, model checking thus allows this
model to be proven correct with respect to this expected behaviour.

The Model Checking Problem
In the model checking framework, system models are represented as Kripke struc-
tures [see e.g. CGP99].

Definition 1.7.1. A Kripke structure is a quadruple K = ⟨W,W0, T, L⟩, where:

• W is a finite set of worlds (also called states);

• W0 ⊆W is the set of initial worlds;

54



1.7 Applications of Knowledge Compilation

• T ⊆ W ×W is a binary relation on W , called the transition relation, indi-

cating the possible transitions between worlds. T must be left-total: ∀w ∈
W,∃w′ ∈W, ⟨w,w′⟩ ∈ T .

• L : W → 2P is the labeling function, where P is a set of propositional atoms.
L indicates which propositions hold in each world.

A Kripke structure is representable as a graph, as shown on Figure 1.11. It is meant
to reflect the possible evolutions of the modeled system, passing from one world
to another; each path in the graph corresponds to a given sequence of events that
can occur on the system. Note that since T is left-total, the graph cannot be a tree:
a path p is thus an infinite sequence of worlds ⟨w0, w1, w2, . . .⟩ such that for all
i ∈ N, ⟨wi, wi+1⟩ ∈ T .

Using the labeling function, we can express properties on each world of a
Kripke structure. To express more general properties, that hold on the whole model,
we need somemodal logic. We will use here a temporal logic, namelyComputation
Tree Logic (CTL) [Eme90]. Basically, CTL formulæ are propositional sentences
with temporal operators: for example, the CTL formula EXp means “p holds in
at least one of the immediate successors of the current world”; and AXp means
“p holds in all the immediate successors of the current world”. There are other
temporal operators in CTL, that we do not detail here.

The semantics of CTL formulæ is defined on some world w of some Kripke
structure K. For example, K,w |= EXp holds if and only if there exists a path
⟨w,w′, w′′, . . .⟩ such that K,w′ |= p. Similarly, K,w |= AXp holds if and only if
all paths ⟨w,w′, w′′, . . .⟩ verify K,w′ |= p. When K,w |= φ holds (with φ a CTL
formula), we say that φ is true in w. For φ to be true in K as a whole, denoted
K |= φ, it must hold that K,w |= φ for all w ∈W0.

All in all, a model checking problem is defined as follows.

Definition 1.7.2. Amodel checking problem is a couple ⟨K,φ⟩, whereK is a Kripke
structure andφ a CTL formula on the same propositional atoms. The model checking
problem consists in deciding whether K |= φ holds.

From Classical Algorithms to Symbolic Model Checking

To decide whether a CTL formula holds on some Kripke structure, classical model
checking algorithms directly use the definition of the semantics of CTL. That is, the
truth value of atomic formulæ is computed by simply checking whether it is true
in all worlds of W0. The truth value of EXp is computed by checking whether p
holds in some world w′ such that (w,w′) ∈ T , for each w ∈W0. Similar methods
are used for all temporal operators, always implying the computation of sets of
successor or predecessor worlds. All in all, the basic operations needed by model
checking algorithms are the following [Mer01]:

1. basic operations on sets—union, intersection, complement;
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2. computation of the sets of successor and predecessor worlds of a current set
of worlds;

3. verification of inclusion and equality between two sets.

These classical algorithms unfortunately could not deal with realistic problems,
which generally need huge numbers of worlds. Symbolic model checking [BC+92,
McM93] has been invented to overcome this obstacle. The idea is to directly handle
sets of worlds, rather than individual worlds, by representing these sets as proposi-
tional formulæ. For example, given two propositional atoms p and q, the formula
p∧ q represents the set of all worlds in which p∧ q holds. Assuming that the label-
ing function is injective9 (two different worlds are not labeled by the same set of
atoms), any set of worlds corresponds to at least one propositional formula. First
works on symbolic model checking succeeded to handle models with more than
1020 worlds by representing these formulæ as OBDDs; let us explain why.

Symbolic Model Checking Using Knowledge Compilation
Using the notation of our knowledge compilation framework, we can see the atoms
of P as Boolean variables, and thus express worlds as P-assignments: a world w
such that L(w) = {p, q, r} corresponds to the unique P-assignment in which p, q,
and r are assigned to ⊤, and all the other variables are assigned to ⊥. Finally, we
can express a set of worlds S as a Boolean function of the form fS : Dom(P) → B,
that associates ⊤ with all P-assignments corresponding to a world in S, and ⊥ with
all P-assignments corresponding to a world not in S.

The trick used in symbolic model checking to represent transition relations is
the duplication of variables. Each atomic variable p ∈ P is associated with another
variable p′, interpreted as the proposition p on successor worlds. Hence, while
Boolean functions on variables from P represent sets of current worlds, Boolean
functions on variables from P ′ represent sets of next worlds. A transition from a
world #—p to a world #—q can thus be represented as the P ∪ P ′-assignment #—p . #—q ′.
Finally, the transition relation is simply a Boolean function FT over variables from
P ∪P ′, of which the possible transitions are models, and the impossible transitions
are countermodels.

All the elements of a Kripke structure that are used in model checking algo-
rithms (i.e., sets of worlds and transition relation) are now represented as Boolean
functions of Boolean variables. Depending on how they are represented, opera-
tions used by model checking algorithms may be computationally hard. It seems
therefore interesting to make use of knowledge compilation on these elements.

In order to choose a language, we must identify the operations on Boolean func-
tions that correspond to the operations on sets used by model checking algorithms.

1. Basic operations on sets are simply basic operations on Boolean functions:
intersection is conjunction, union is disjonction, complement is negation. We
thus need the following transformations: ∧BC, ∨BC, ¬C.

9This can be done without loss of generality, by adding a sufficient number of “fresh” propositional
atoms to distinguish similar worlds.
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2. The set of successors of a set of worlds S is obtained with the following
operation: ∃P.(fS ∧ FT ). The set of predecessors of S′ is ∃P ′.(FT ∧ fS′).
We thus need the SFO transformation (the number of variables to forget is
bounded).

3. Two sets S1 and S2 are equal if and only if fS1 ≡ fS2 . S1 ⊆ S2 if and only
if fS2 |= fS1 . We thus need queries SE and EQ.

We need all these operations to be made online, that is, during the execution of the
algorithm. According to Tables 1.1 and 1.2, reasons for the success of the OBDDSBB
language in symbolic model checking are quite clear; it is the only language sup-
porting all necessary operations.

Finally, compiling the set of initial worlds W0 and the transition relation T as
OBDDs is easy, using for example the bottom-up fashion. With a good variable
ordering, compiled forms can be exponentially smaller than explicit enumerations.
Classical model checking algorithms adapted to OBDDs can thus be much more
efficient. This is a first example of how knowledge compilation can allow a practi-
cal scaling obstacle to be overcome. Symbolic model checkers include the original
SMV [McM93], its reimplementation NuSMV [CC+99], and its extension to SAT-
based model-checking, NuSMV2 [CC+02].

1.7.2 Diagnosis
Diagnosis is an artificial intelligence field the purpose of which is to help deter-
mining whether a system behaves correctly, and if it is not the case, indicating the
cause and origin of the malfunction. We focus here on model-based diagnosis [see
e.g. HCK92], in which diagnoses are computed automatically online, leaning on a
model of the system, as well as current observations.

The Diagnosis Problem
We consider a simplified framework, in which the system to be diagnosed is mod-
eled as a propositional formula.
Definition 1.7.3. A system description is a triple S = ⟨∆,A,O⟩, where ∆ is a
propositional formula over variables X , A ⊆ X is the set of assumable variables
(each one encoding the working condition of some component), and O ⊆ X \ A
the set of observable variables (an assignment of which corresponds to a possible
observation, or measure).

Formula ∆ encodes the behavior of the system, in normal conditions, but also in
presence of component failures. Each model of ∆ corresponds to a possible situa-
tion, associating an observation with a “health state” of the system’s components.
For the sake of simplicity, this definition of a system description does not allow
dynamic behavior to be modeled; we limit ourselves to static systems. The diagno-
sis problem that we study is, given an observation, to compute all the compatible
health states—they are known as consistency-based diagnoses. We do not study
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how these diagnoses are exploited; an example could be to identify component
failure that is common to all diagnoses. We simply focus on the computation of the
set of consistency-based diagnoses.
Definition 1.7.4. A model-based diagnosis problem is a couple ⟨S, #—o ⟩, where S =
⟨∆,A,O⟩ is a system description and #—o is an O-assignment. The problem consists
in computing all A-assignments #—a such that #—a . #—o is logically consistent with ∆
(that is, ∆| #—a . #—o ̸|= ⊥).

The consistency-based diagnoses are the A-assignments. Note that we ignore vari-
ables from X \ (O∪A), called the nonobservable variables: we want #—a . #—o to be
consistent with ∆, but we do not want it to be a model of ∆.

Our diagnosis problem can be hard, depending on how ∆ is represented. Yet,
we want to be able to obtain diagnoses online. It hence seems interesting to use
knowledge compilation.

Knowledge Compilation for Model-Based Diagnosis
Knowledge compilation is well-adapted to model-based diagnosis. Different lan-
guages have been used throughout the years, from PI [De 90] to OBDDSBB [SM96
for dynamic systems, TT03 for static systems] and DNNF [Dar01a, HD05b]. Let us
apply knowledge compilation on our simplified diagnosis problem.

Of course, what we want to compile here is the model of the system: ∆ can be a
huge formula, and we know it never changes (it does not depend on observations).
We hence translate ∆ into a Boolean language, since it is a Boolean function on
Boolean variables. The operations we need are the following:

1. restriction of ∆ to the current observation #—o : this is the CD transformation;

2. existential projection of the result on the assumable variables: this is the SFO
transformation (on the non-observable variables);

3. finally, we must be able to retrieve diagnoses, enumerating models of the
resulting formula: this is the ME query.

The knowledge compilation map (Tables 1.1 and 1.2) shows that OBDDSB<,B, DNNFSBB ,
PI, and DNFSBB are suitable languages for this application, and that among these lan-
guages, the best one is probably DNNFSBB (it is unsure whether DNNFSBB ⩽s PI). The
diagnosis problem we defined was very simplistic; previously cited works include
applications of knowledge compilation to more complex problems, such as the com-
putation of diagnoses involving as few faults as possible (minimum-cardinality di-
agnoses).

1.7.3 Product Configuration

Product configuration [Stu97, SW98a] is an important area of research about as-
sisted decision, with many successful practical applications in industry. It takes
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place between the seller and the buyer of a customizable product. The buyer can
configure the product by deciding on his preferred values for a set of attributes
(such as color or options). An assignment of all attributes is called an alternative.
Generally, it is not possible to choose any alternative, notably because some op-
tions are not compatible. The customer nevertheless wants to be able to fix some
attribute, then to see which values are available for the remaining attributes, to fix
another attribute, and so on. The product configurator is the system that allows
this, reasoning on a model of the customizable product.

The Configuration Problem

We define a basic configuration problem, adapted from Hadzic, Jensen, and Ander-
sen [HJA07].
Definition 1.7.5. A configuration problem is a couple Π = ⟨C, #—a ⟩, where C is a
constraint network ⟨V,C ⟩ [Def. 1.6.1], called the catalog, of which solutions are
possible alternatives, and #—a is an assignment of a set of variables A ⊆ V , repre-
senting some assumptions made by the user. The problem consists in computing all
consistent values (i.e., the context [Def. 1.4.3]) for each variable in V \ A, in the
restriction of the catalog to alternatives compatible with #—a .

It corresponds exactly to the requirements we stated in the previous paragraph. In
practice, product configuration is more complex. For example, customer Bob needs
to be able to relax any assumption he made, so that he can restore an option ren-
dered unavailable by his previous choices. The configurator must be able to guide
Bob through this, explaining why the choice is not possible, and indicating the best
relaxation according to his defined preferences. Nonetheless, even our simplistic
configuration problem can be computationally hard, depending on the way the cat-
alog is represented.

Knowledge Compilation for Configuration

Our problem clearly shows the interest of using knowledge compilation to imple-
ment the configurator. There is a fixed knowledge base, possibly huge, viz., the
catalog; and the only parameter that varies online is the set of assumptions. The
catalog can be seen as a Boolean function on enumerated variables; as usual, we
identify the queries and transformations needed online, to decide which Boolean
languages are suitable for this application.

1. The restriction of C to the current set of assumptions #—a corresponds to the
CD transformation.

2. The enumeration of compatible values can be done by checking, for each
value of each variable, whether the function is still consistent when restricted
to this variable assignment. This needs the CD transformation again, and the
CO query. Another possibility would be to use FO and ME, or a specific
context extraction query that we will define in Section 3.3.3.

59



Chapter 1 Knowledge Compilation

These requirements are met by a number of Boolean languages on Boolean vari-
ables, notably PI and OBDDSBB ; they have been used to compile the configuration
problem, using several Boolean variables to encode each enumerated domain, re-
spectively by Sinz [Sin02] and Hadzic, Jensen, and Andersen [HJA07]. Suitable
languages on enumerated variables notably include OBDDSZE , used for configuration
in the form of finite-state automata [AFM02]. Let us also cite Pargamin [Par03],
who used cluster trees (which is not included in our knowledge compilation map).
All these works use more complex frameworks than the one we defined—for ex-
ample by assigning weights to constraints, to model user preferences or prices.

***

In this chapter, we presented knowledge compilation, a technique consisting
in translating a problem offline to speed up its online resolution. We put the em-
phasis on the knowledge compilation map, detailing its concepts in a quite gen-
eral framework. We presented a number of graph-based Boolean languages from
the literature, classified as sublanguages of a wide-range language we introduced,
GRDAG. Inspired from the VNNF framework, it notably allows all decision diagram
languages to be grouped together, be their variables Boolean or not. Then, we
gathered together the knowledge compilation results of all those languages. After
presenting the best-known non-Boolean languages, we finally detailed practical as-
pects of knowledge compilation—compilation methods and existing compilers; the
last section was dedicated to practical applications of knowledge compilation. We
can now move on to the second chapter, which deals with the other AI field related
to our topic, namely automated planning.
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CHAPTER

2

Planning

An autonomous system needs to make decisions that fit its current situation and
mission. Making a decision implies reasoning about the possible alternatives, their
outcomes, and their combination, in order to select a good “first step” towards the
success of the mission. By definition of an autonomous system, this reasoning
cannot be made by some human operator. A possibility for an autonomous system
to make decisions is to rely on automated planning.

In this chapter, we present a broad outline of automated planning, starting with
a general, formal definition of the field [§ 2.1], then moving on to a description of
various frameworks and techniques in planning, which we call planning paradigms
[§ 2.2], and finally providing insight about the application of knowledge compila-
tion to planning [§ 2.3].

2.1 General Definition

2.1.1 Intuition
From a general point of view, planning aims at answering the following question:
“what should be done for a given objective to be achieved?”. In automated plan-
ning, this question must be answered by an algorithm, called a planner. This first
intuitive definition is deliberately quite vague, since there exists various forms of
planning. Let us detail why it is ambiguous.

First of all, the answer to the question “what should be done?” obviously de-
pends on what can be done, that is, on possible actions. This brings up the question
of the representation of the world. In planning, the world is generally modeled as
a state-transition system, with actions and events modifying its current state.

Second, the notion of “objective to be achieved” can designate various require-
ments. For example, it can be the finite, fixed goal of a mission (for example,
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reaching a given place), or continuous, perpetual ones (for example, continuously
following a given path). In the latter case, the goal is never achieved, but must
be permanently ensured; planning problems with such objectives are called control
problems. There can also be several goals, of various importance to the mission, in
which case the planner must optimize its output with respect to given preferences.

The last ambiguity concerns the desired form of the answer. Do we want one
sequence of actions? Do we need the choice of actions to depend on some condi-
tion? How robust should it be to uncertainties and aleas?

We discuss all of these ambiguities in the remainder of this section; the ques-
tion of the representation of the world is addressed first [§ 2.1.2], then the other
elements of a planning problem are detailed [§ 2.1.3]; last, we present different
kinds of solutions [§ 2.1.4]. Let us emphasize that our overview is not meant to be
exhaustive; the interested reader can consult the reference book by Ghallab, Nau,
and Traverso [GNT04], or recent tutorials such as Rintanen’s [Rin11] or Geffner’s
[Gef11].

2.1.2 Description of the World
When defining a planning problem, one obviously does not take the whole world
into account, but rather wants to describe a number of elements of interest, with
which the agent (i.e., the autonomous system concerned by the problem) can inter-
act. The reasoning then only applies to these elements—the world is restricted to
them. This section presents the way these elements are described, allowing them
to be handled by automated reasoning.

Basic Model
The general model of the world is often a state-transition system [GNT04, § 1.4].
Definition 2.1.1. A state-transition system is a quadruple Σ = ⟨S,A,E, γ⟩, where

• S is a recursively enumerable set of states;

• A is a recursively enumerable set of actions;

• E is a recursively enumerable set of events;

• γ : S ×A× E → 2S is a state-transition function.

This model allows one to represent the dynamics of the world. The current state
can be modified by an event, on which the agent has no control, or by an action,
triggered by the agent. Events and actions are called state transitions (hence the
name of the system). A state-transition system can be viewed as a multigraph the
nodes of which are the states of the system, and the edges of which are the actions
and events. The diagram of Figure 2.1 is a graphical representation of the state-
transition system modeling the world of a quite simple planning problem.

The state-transition system model is generally not used in this basic form. There
are numerous planning paradigms, each one making restrictive assumptions on the
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Figure 2.1: Elements of a planning problem. Circles represent states, and edges (A,
B, C…) represent actions, that make the world go from one state to another.

model or enhancing it by adding information on some elements. These modifica-
tions are aimed either at making reasoning simpler, or at fitting the specific features
of some application area.

Common Model Restrictions

Here are the most common restrictions of the basic definition of a state-transition
system:

• finite sets of states, actions, and events;

• static system—there is no uncontrollable dynamics,E is a singleton contain-
ing the “empty” event;

• deterministic system, in which the effect of actions is known for sure—
applying a given action in a given state always leads to the same state, that
is, ∀s ∈ S, ∀⟨a, e⟩ ∈ A× E, |γ(s, a, e)| = 1.

These assumptions are sometimes made all at once, as it is the case in classical
planning [§ 2.1.3.3], but this is not necessarily true. Each planning paradigm has
its own set of restrictions.

Common Model Extensions

Even when none of these restrictions is applied, the basic model of Definition 2.1.1
still has a quite limited expressivity. Planning paradigms often refine it, by adding
information to one element or another.

• States can have various levels of observability, meaning that the current state
may not be fully known by the system (this can even be the case of the initial
state);

• state transitions can be probabilistic, inducing a hierarchy in the possible
outcomes of an action [§ 2.2.4];
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• actions can be made durative, enhancing the model so that time can be taken
into account [§ 2.2.5.4].

All these modifications—restrictions and extensions—only affect the theoret-
ical model of the world. In practice, a planner handles a representation of this
abstract model. The choice of the concrete representation also differs from one
planning paradigm to another.

Model Representation

There can be a huge number of states in a world. This number is not even necessar-
ily finite in the general case. Yet, the planner must take a description of the world
as input; it thus requires some implicit representation of the world, in which states
are not enumerated in extenso.

A possible representation, based on propositional logic, expresses states as as-
signments of some state variables and transitions as formulæ over these variables.
For example, let us consider two Boolean state variables light-on and door-open.
Their assignments describe four possible states:

• light-on = ⊥, door-open = ⊥: the light is off and the door is closed;

• light-on = ⊥, door-open = ⊤: the light is off and the door is open;

• light-on = ⊤, door-open = ⊥: the light is on and the door is closed;

• light-on = ⊤, door-open = ⊤: the light is on and the door is open.

Actions are generally defined by two types of formulæ on state variables, called
preconditions and effects. For a given action to be executable in a given state, the
preconditions of this action must hold in this state. Once it has been applied, the
world ends up in a state in which the effects hold.

Evolution of the world is often considered as a sequence of steps; each step
corresponds to a given state, and thus to a given assignment of the state variables. In
this case, state variables are called fluents, and preconditions and effects are usually
represented as sets of fluents: those that must be true (preconditions), those that
become true (positive effects), and those that become false (negative effects). An
example of state-transition system expressed using this typical fluent formulation
is given on Figure 2.2.

2.1.3 Defining a Planning Problem

We now have an idea of how the world is described in a planning problem. This is
however not sufficient to fully define a problem; a given world model can be the
basis for many different problems, depending on the initial state and the goal.
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Figure 2.2: A state-transition system defined with fluents. Each square represents
an action, with its preconditions on the left (fluents that must be true for the action
to be executable), and its effects on the right (fluents that become true or false once
the action has been executed).

Initial States
In a given state-transition system, it is of course possible to choose various states to
be the initial one. For example, if the world model describes the possible paths of an
automated vehicle, we can consider the problem of reaching a goal position starting
from different locations. In classical planning problems defined with fluents, the
initial state is specified by a set of fluents, namely the fluents that are true in this
state. In the example of Figure 2.2, we could set the initial state to {i}; it means
that initially, i is true, and all the other fluents are false.

It is not mandatory that there be a single initial state. Some specific planning
frameworks, such as conformant planning [SW98b] or planning as model-checking
[GT99], use multiple initial states; this can be a way to introduce some uncertainty
in the problem, without using nondeterministic actions.

The Notion of Goal
Intuitively, the purpose of planning is to find a way for some desired state to be
reached; but goals can actually be much more complex. The basic goals are called
reachability goals; they are simply defined by a state, or a set of states. With the
fluent representation, this set of states may be expressed as a set of fluents—the
ones that are required to be true at the end.

With reachability goals, a plan can only fall into two cases: either it is a solution
or it is not. But let us consider for example an explorer robot that must gather
as many samples as possible. This goal is obviously not “reachable”, but rather
induces a classification among possible outcomes; a solution is thus a plan that
leads to the preferred outcome.

There are other examples that do not even involve valuation; suppose the ex-
plorer robot must gather samples, such that it always stay within the range of the
radio control, so that it can come back to the station whenever it is asked to. Here
the goal is a condition that must be fulfilled during the whole execution. Such goals
are called extended goals [DLPT02, PT01].

Planning Problems
Planning problems are defined using the various elements we presented before: a
generic planning problem is defined as a state-transition system, an initial set of
states, and a goal. Problems are classified with respect to the type and properties
of their elements. A classical planning problem is thus defined as follows [FN71].
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Definition 2.1.2. A classical planning problem is a triple P = ⟨Σ, s0, G⟩, where
Σ = ⟨S,A, γ⟩ is a finite, static, and deterministic state-transition system, s0 ∈ S is
the initial state, and G ⊆ S is the set of goal states.

Relaxing one of the state-transition system’s restrictions, extending it, or using ex-
tended goals, raises different kinds of planning problems. Except for classical plan-
ning, categories of planning problems have generally no name of their own; they are
named after the paradigm that uses them, like “MDP planning problem” [§ 2.2.4],
or simply described extensively, like “problem of nondeterministic planning with
reachability goals under partial observability”.

With the purpose of unifying planning problem representations, and accounting,
in a clear and normalized way, for respective abilities of different planning algo-
rithms, various description languages have been created. The first to be widely
used was the STRIPS language; it was designed to express entries for the Stanford
Research Institute problem solver [FN71], and as such, only aimed at representing
problems that the solver couldn’t handle.

STRIPS has been extended by ADL (action description language) [Ped89],
which can express disjunctions of fluents in preconditions and effects. The current
standard is PDDL (planning domain definition language) version 3.1 [see Kov11
for a complete specification]. It is more expressive than STRIPS and ADL, notably
allowing representation of durative actions, numeric fluents, action costs, prefer-
ences over states, and derived predicates. An extension of PDDL, named PDDL+,
allows mixed (discrete and continuous) domains to be handled [FL06].

2.1.4 Solutions to a Planning Problem
As we saw, there are multiple kinds of planning problems. Let us now define what
a solution to a given planning problem is.

Form of Solutions
There are various forms of possible solutions. The basic solution to a planning
problem is simply a sequence of actions, called a plan.
Definition 2.1.3 (Plan). Let Σ = ⟨S,A, γ⟩ be a state-transition system. A plan π for
Σ is a finite sequence of actions from A: π = ⟨a1, . . . , an⟩ ∈ An, with n ∈ N the
horizon of π.

Not all plans are solutions. Some are not even feasible—this is formally addressed
in the next subsection. Intuitively, a plan is a solution to a problem if it “allows
the goal to be reached” when the actions are executed in the given order, starting
from the initial state. For example, taking the classical planning problem defined
in Figure 2.2, if the initial state is defined by {i}, a solution plan to the problem of
reaching a state where f is true is ⟨B,A,C⟩.

There exists various kinds of plans: they can be either sequential or parallel (if
actions are allowed to be executed simultaneously). If the actions to be executed
depend on observations, plans are called conditional. Different forms of solutions
than plans also exist, namely policies.
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Definition 2.1.4 (Decision policy). Let Σ = ⟨S,A, γ⟩ be a state-transition system.
A decision policy δ for Σ is a function δ : S → A. Policy δ may be partial, that is,
not defined on the entire set of states.

Contrary to solution plans, that provide an ordered sequence of actions to execute,
a policy is a function going from the set of states to the set of actions. It actually
yields the next decision to make, given the current state. Once this decision has
been executed, the system has to ask the policy once more to determine the next
action, etc.

Policies are more robust to uncertainty than solution plans: during execution,
if one of the decisions made has not had the expected effect, a plan may become
useless (if remaining decisions do not fit the unexpected state). Using a policy, even
if the current state is unexpected as an effect of last decision, a good action for that
state may still be available.

The form of the expected solution to a problem thus greatly depends on the
model: policies are suitable to nondeterministic problems, but require a modifi-
cation of the model (adding special state variables accounting for the “history” of
executed actions) to allow fixed sequencing of actions. Conditional plans are suit-
able to partially observable problems, but they do not enable a given action to be
repeated indefinitely until some given state is reached.

Feasibility of Solutions
In order to define what a solution plan and a solution policy are, we have to express
the fact that plans and policies are not necessarily executable, or feasible. Intu-
itively, feasibility means that the plan or policy is compatible with the transitions
of the model. The formal definition of a feasible plan [adapted from FG00] involves
the notion of history.
Definition 2.1.5 (History). Let Σ = ⟨S,A, γ⟩ be a state-transition system, and π =
⟨a1, . . . , an⟩ a plan for Σ. A history for π is a sequence of states ⟨h0, . . . , hk⟩ ∈ Sk,
with 0 ⩽ k ⩽ n, verifying

∀i ∈ {1, . . . , k}, hi ∈ γ(hi−1, ai).

State h0 is called the starting state of this history, hk its ending state, and k its size.

A history is thus a sequence of states that is compatible with plan π: applying this
plan in the starting state may lead to the ending state.
Definition 2.1.6 (Feasible plan). Let Σ = ⟨S,A, γ⟩ be a state-transition system, and
s0 ∈ S. A plan π = ⟨a1, . . . , an⟩ for Σ is said to be feasible from s0, or (always)
executable from s0, if and only if any history for π of size k < n and starting from
s0 is such that |γ(hk, ak+1)| > 0.

A plan is feasible from a given initial state if the first action is applicable in the
initial state, and the second action is applicable in any of the possible resulting
states, etc. For a plan to be feasible, there must be no history leading to a state in
which the current action is not executable.
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To define histories on solution policies, we need to introduce the following
concept of execution structure.
Definition 2.1.7 (Execution structure). Let Σ = ⟨S,A, γ⟩ be a state-transition
system, and δ a policy. The execution structure induced by δ on Σ is the set
Σδ = { ⟨s, s′⟩ ∈ S × S | s′ ∈ γ(s, δ(s)) }.

An execution structure is thus a simplified state-transition system, in which no ac-
tion is left; it can be viewed as a directed graph the edges of which are the transitions
that are compatible with the policy. We can now define histories for decision poli-
cies.
Definition 2.1.8 (History). Let Σ = ⟨S,A, γ⟩ be a state-transition system, s0 ∈ S,
and δ a policy. A history of δ from s0 is a complete path in the execution structure
Σδ that starts in state s0.

Note that contrary to histories for plans, histories for policies may be infinite. Note
also that they are complete paths, that is, they can only end in states for which the
policy does not provide any action to apply. We use the notion of history in the next
subsection; for now, let us define executable policies [GT99].
Definition 2.1.9 (Executable policy). Let Σ = ⟨S,A, γ⟩ be a state-transition system.
A policy δ for Σ is said to be executable if and only if for every couple ⟨s, a⟩ such
that a = δ(s), there exists a state s′ ∈ S verifying s′ = γ(s, a).

A policy is executable if each action it returns is executable in the current state.
Note that this definition is simpler than that of a feasible plan.

Strength of Solutions
Being executable is a necessary condition for a plan or policy to be a solution to a
given planning problem. It is not sufficient, of course; the second requirement is
that it allows the goal to be reached.
Definition 2.1.10 (Classical planning solution). Let P = ⟨Σ, s0, G⟩ be a classical
planning problem. A plan π for Σ is a solution to P if and only if it is feasible, and
there exists a history for π from s0 that ends in one of the goal states g ∈ G.

For a non-classical problem, the definition of a solution is actually not unique;
indeed, this problem can be more or less prone to uncertainty, for example through
nondeterminism or partial observability. Requirements regarding the soundness of
the solution may not always be the same. For some applications, the goal must be
reached in all cases in spite of nondeterminism: a strong solution is hence sought.
For some other applications this soundness is not strictly necessary; it is possible
to be optimistic and seek a weak solution.

The strength of a solution plan is related to the notion of history, that we de-
fined in the previous subsection. Various types of solution can be defined for each
category of planning problems; let us give some examples, which we refer to in
the following. The simplest kind of solution is the weak one, that only requires the
existence of a history [GT99].
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Definition 2.1.11 (Weak solution). Let P = ⟨Σ, S0, G⟩ be a planning problem with
several initial states and reachability goals. A plan π (resp. a policy δ) for Σ is a
weak solution to P if and only if it is executable from s0, and for all s0 ∈ S0, there
exists a history for π (resp. δ) from s0 that ends in one of the goal states g ∈ G.

For a policy to be a weak solution, there simply must exist at least one path from
each initial state to one of the goal states in the execution structure.1 For it to be a
strong solution, there must not exist any path not leading to a goal state [CRT98b].

Definition 2.1.12 (Strong solution). Let P = ⟨Σ, S0, G⟩ be a planning problem with
several initial states and reachability goals. A policy δ for Σ is a strong solution to
P if and only if it is executable, and for all s0 ∈ S0, all histories for δ from s0 are
finite and end in one of the goal states g ∈ G.

When referring to plans, strong solutions are called conformant solutions.

Definition 2.1.13 (Conformant solution). LetP = ⟨Σ, S0, G⟩ be a planning problem
with several initial states and reachability goals. A plan π for Σ, of horizon n, is a
conformant solution to P if and only if for all s0 ∈ S0, it is feasible from s0, and all
histories for π of size n and starting from s0, end in one of the goal states g ∈ G.

Conformant solutions are generally sought for fully non-observable problems, in
which the plan must be valid even though the system has no idea of the state it is in
[see e.g. SW98b]. If the problem is (partially) observable, this kind of solution is
rather called contingent [DHW94]. Let us finally define a midterm between weak
and strong solutions [CRT98a].

Definition 2.1.14 (Strong cyclic solution). Let P = ⟨Σ, S0, G⟩ be a planning prob-
lem with several initial states and reachability goals. A policy δ for Σ is a strong
cyclic solution to P if and only if it is executable, and for all s0 ∈ S0, all finite
histories for δ from s0 end in one of the goal states g ∈ G.

Note the difference with strong solutions: there can be infinite histories, but they
are not taken into account. The requirement is only that finite histories cannot end
in a non-goal state. The idea is to consider infinite loops to be highly unlikely—a
strong cyclic solution hence being able to reach the goal “almost certainly”.

2.2 Planning Paradigms

Throughout the years, many techniques have been used to tackle planning prob-
lems. Some techniques aim at solving specific categories of problems; some others
endeavor to be as generic as possible. In this section, we give some insight about
several planning paradigms that are particularly related to our subject.

1Without loss of generality, we consider goal states to be dead-end states, in which no action is
possible.
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2.2.1 Forward Planning in the Space of States

The simplest planning paradigm consists in reasoning directly on the state-transition
system, that is, using a state-space search [see e.g. GNT04, Chapter 4]. The idea is
to try to reach a goal, starting from the initial state; in other terms, to find a path,
in the graph representing the state-transition system, from the initial state to a goal
state. If there is no such path, the problem has no solution. If there is such a path,
the plan consisting of the corresponding sequence of actions is a solution to the
problem.

Algorithm 2.1 Forward state-space search.
1: function: ForwardSS(P, s)
2: input: a classical planning problem P = ⟨Σ, s0, SG⟩
3: input: a current state s
4: output: a plan π from s to the goal if there exists one, and nil otherwise
5: if s ∈ SG then
6: return the empty plan
7: let As be the set of actions a that verify |γ(s, a)| ̸= 0
8: while As ̸= ∅ do
9: pick some a in As (and remove it)

10: let s′ := γ(s, a)
11: let π := ForwardSS(P, s′)
12: if π ̸= nil then
13: return a . π
14: return nil

Algorithm 2.1 presents this procedure using a recursive fashion. This approach
can also be used backwards—starting from the goals and trying to reach the ini-
tial state. The drawback of this rather straightforward technique is that the search
space is generally huge: in the worst case, all possible sequences of actions are
explored. As a consequence, this paradigm is never used as such, but with heuris-
tics for the choice of the next action [see Section 2.2.5.2], or with restrictions on
possible actions, as was done in the STRIPS algorithm [FN71].

2.2.2 Planning as Satisfiability

The idea behind the planning as satisfiability [KS92b] paradigm is to solve planning
problems using SAT solvers (programs able to decide whether a given propositional
formula is satisfiable). Indeed, the constant improvement of these solvers is the
aim of a very lively branch of artifical intelligence; efficient algorithms have been
developed, and it is possible to take advantage of their performance in a planning
context.

To do so, a planning problem P = ⟨Σ, s0, g⟩ is encoded as a propositional
formula φ, such that any model of φ corresponds to a solution plan to P . The
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usual method is to decompose the horizon into steps, each step corresponding to
the application of some action in some state of the world. There must thus be
specific state and action variables for each step, the assignment of which indicates
the current state and the action applied at that step. This obviously means that we
cannot deal with an unbounded horizon: this would imply an infinite number of
states and actions—and hence an infinite propositional formula.

The planning problem is therefore restricted to a more constrained problem:
finding a plan of horizon n (with n some fixed integer). The number of steps is
then finite; each action variable a is duplicated into n versions a0, a1, . . . , an−1,
and each state variable s into n + 1 versions s0, s1, . . . , sn. The encoding of the
problem is now straightforward. We illustrate it on a classical planning problem P ;
in this case, the encoding φnP is basically the conjunction of formulæ corresponding
to the following requirements:

• the assignment of state variables at step 0 must represent the initial state;

• the assignment of state variables at step n must represent the goal state;

• for all i between 0 and n − 1, denoting ai the action represented by the as-
signment of action variables at step i, state variables at step imust respect the
preconditions of ai, and state variables at step i+ 1 must respect its effects.

This is not all; this encoding does not prevent state variables that are not modified
by the current action from changing, whereas it is supposedly forbidden by the
frame axiom—and it does not even prevent several actions from being applied at
the same step. An actual encoding must of course include formulæ forbidding this
kind of behaviour.

The final formula φnP is equivalent to the original bounded planning problem,
in the sense that every model of the formula is a solution to the problem. We
can indeed extract a plan from a model #—x : it is simply the sequence of actions
⟨a0, . . . , an−1⟩—let us denote this plan by π #—x . By definition, this plan is a so-
lution to the planning problem, and the reverse is also true, as summed up in the
following proposition [KS92b].

Proposition 2.2.1. Let P be a classical planning problem, and φnP its propositional
encoding (following the rules described above). Let #—x be a Scope(φnP )-assignment;
it holds that #—x ∈ Mod(φnP ) if and only if π #—x is a n-step solution plan to P .

To find a solution plan using this property, one thus just has to run a SAT solver on
φnP , with increasing values of n (that is, starting from n = 1, run the solver, and
and while no solution is found, increment n and start again). Many refinements can
be made to that paradigm, based for example on the kind of SAT solver used, the
encoding of actions, or the encoding of the frame axiom [KMS96, GMS98]. This
approach has notably been extended to conformant planning [FG00, CGT03].
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2.2.3 Planning as Model-Checking
Planning using model-checking [CG+97, GT99] is a paradigm aiming at solving
nondeterministic planning problems. It is based on the fact that an execution struc-
ture (i.e., a state-transition system “restricted” by some policy [Def. 2.1.7]), cor-
responds exactly to a Kripke structure [Def. 1.7.1], given that states are encoded
using propositional variables. For the policy to be a weak solution to the planning
problem, it is sufficient that there exist a path from the initial state to the goal state.
For the policy to be a strong solution, all paths starting from the initial state must
lead to the goal state. Basically, it is possible to use a CTL formula to express the
fact that the policy is a solution; hence, verifying whether the policy is a solution
boils down to applying model checking on the execution structure.

This enables one to use model-checking techniques to solve a planning prob-
lem; but this is not the only asset of this approach. It indeed allows one to apply the
expressivity of CTL to planning, and thus deciding on the strength of the desired
plan [CG+97 for weak planning, CRT98b for strong planning, CRT98a for strong
cyclic planning], but also to look for plans fulfilling a continuous condition, such
as “keep the radio contact” [PT01]. Let us illustrate this approach by focusing on
strong planning.
Definition 2.2.2 (Execution structure as a Kripke structure). Let P = ⟨Σ, S0, Sg⟩
be a planning problem, and δ a policy on Σ = ⟨S,A, γ⟩. The Kripke structure
corresponding to the execution structure Σδ is KP,δ = ⟨W,W0, T, L⟩, with

• W = S;

• W0 = S0;

• T = { ⟨w,w′⟩ ∈W 2 | w′ ∈ γ(w, δ(w)) };

• L the function associating with each world w (which is also a state) the state
variable assignment #—s representing w.

As previously stated, the fact that δ be a strong solution to a planning problem P
is equivalent to the fact that a certain property hold on KP,δ. This property is the
CTL formula AFg, where g is the formula on state variables that holds on states
in Sg, and AF is the CTL operator meaning “all paths eventually lead to a world
where the formula is true” [GT99].
Proposition 2.2.3. Let P = ⟨Σ, S0, Sg⟩ be a planning problem, and δ a policy on
Σ = ⟨S,A, γ⟩. δ is a strong solution to P if and only if KP,δ |= AFg.

Using this property, it is possible to take advantage of a model-checking algorithm
to build policies respecting the requirements.

2.2.4 Planning Using Markov Decision Processes
Using the standard state-transition system of Definition 2.1.1, there is no way to
state that one possible outcome of a nondeterministic action is more likely to happen
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than another. Representing the state-transition system as a Markov decision process
[Bel57] is a way of quantifying nondeterminism using probabilities.
Definition 2.2.4. A Markov decision process (MDP) is defined as a quadruple Σ =
⟨S,A, P,R⟩, where

• S is a finite set of states;

• A is a finite set of actions;

• P : S ×A× S → [0, 1] is a probability distribution over the state transitions.
P (s, a, s′) is usually denoted as Pa(s, s′), and represents the probability of
reaching state s′ when executing action a in state s. It must verify

∀s ∈ S,∀a ∈ A,
∑
s′∈S

P (s, a, s′) ∈ {0, 1}

(the sum equals 0 if a is not executable in s, and 1 otherwise);

• R : S×A×S → R is the reward function. R(s, a, s′), often denotedRa(s, s′),
is the immediate reward earned by the agent when it reaches state s′ after
having executed action a in state s.

Because of nondeterminism, on a given MDP, a policy δ that associates a single
action with each state can have several outcomes. Thanks to the probabilities on
transitions, it is possible to quantify the likelihood of outcomes. An outcome of
a policy applied on an MDP2 is called a history, as in the case of non-quantified
transitions [Definition 2.1.8]. It is simply an infinite sequence of states, e.g. h =
⟨s1, s4, s6, s6, s1, . . .⟩. Denoting h = ⟨hi⟩i∈N, the probability of h induced by δ is
given by P (h | δ) =

∏
i∈N Pδ(hi)(hi, hi+1).

The reward function can be used as the “goal” in an MDP; it is used to classify
histories with respect to their desirability. Rewards indeed allow utility functions
to be defined on histories: V (h | δ) =

∑
i∈N γ

iRδ(hi)(hi, hi+1), with γ being a
discount factor (i.e., a parameter in [0, 1[ ensuring that the utility of infinite histories
is finite—more precisely, it makes first rewards count more than later ones). Thus,
in practice, the reward function can for example indicate states that must be avoided
(by associating them with a negative reward), or states that must be visited (by
associating them with a high reward).

Putting together these two properties of a history, we can compute the expected
utility of a policy, by summing utilities of all possible histories balanced with their
probabilities:

E(δ) =
∑
h∈SN

P (h | δ) · V (h | δ),

with SN being the set of all possible histories.
2When associated with a policy, an MDP becomes a simpler object, called a Markov chain. It is

basically an execution structure [Definition 2.1.7] with probabilistic transitions.
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This finally allows us to define what an MDP planning problem is.

Definition 2.2.5. An MDP planning problem is simply defined by an MDP Σ =
⟨S,A, P,R⟩. A solution to an MDP planning problem is a policy δ∗ verifying
E(δ∗) = maxδ∈AS E(δ).

In other words, solving a planning problem expressed as an MDP consists in finding
an optimal policy, that maximizes the expected utility.

2.2.5 More Paradigms

There are numerous other planning paradigms. We rapidly present a few more in
this section; the interested reader can refer to the comprehensive manual by Ghallab,
Nau, and Traverso [GNT04].

Planning in the Space of Partial Plans

Plan-space planning [Sac75] is a classical planning paradigm which consists in
searching in the space of partial plans, instead of in the space of states. There is
no current state: the reasoning is at a global level, on the whole horizon. Search
proceeds by identifying actions that should appear in the solution plan, trying to
add ordering constraints. Backtracking is guided by information about the actions,
explaining how they depend on one another, using causal links and variable bind-
ings.

Planning as Heuristic Search

The idea underlying planning as heuristic search [BG01, HG00, HN01] is to use
heuristics to guide a state-space search. Typical heuristics involve the computation
of some distance to the goal; it is a hard problem in general, so the distance is
often not calculated on the real problem, but on a relaxation of the problem—for
example, ignoring negative effects of actions.

Hierarchical Task Network Planning

Hierarchical task network (HTN) planning [EHN96] is a paradigm to solve prob-
lems that are different from the ones we have seen so far. Indeed, goals are not
defined as states, conditions, or reward functions, but as tasks to be done. An
HTN problem consists of a classical planning problem, together with a set of meth-
ods, that are “recipes” explaining how to decompose some tasks into simpler sub-
tasks, themselves being decomposed into subtasks, etc. The simplest, indivisi-
ble tasks are called primitive tasks, and correspond to actions. The interest of
this paradigm is that the definition of methods allows one to discard irrelevant
sequences of actions—this is a means of incorporating human expertise into the
planning model.
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Temporal Planning
The purpose of temporal planning is to take into account the duration of actions,
and in particular to define more complex conditions and effects of actions—such
as conditions that must hold during the whole execution, or effects that hold only
at a specific point in time. Temporal planning is a wide research area, involving
multiple frameworks; let us cite the work by Cushing et al. [CK+07] that presents
an interesting hierarchy of sublanguages of PDDL depending on their temporal
abilities.

Resource Scheduling
Scheduling is a branch of artificial intelligence studying problems of resource and
time allocation for a number of tasks. Typically, for a task to be done, a fixed set
of activities must be applied; each activity uses some resources and takes a certain
time to be done. The objective is then to find a certain schedule for activities, that
is, a plan indicating when activities must be executed and which resources must
be allocated to them. The schedule must respect some constraints, such as not
sharing a given resource between two activities, not exceeding the allotted time,
etc. Scheduling is often separated from planning, but the two areas are converging,
since many practical problems are neither pure scheduling nor pure planning ones
[see e.g. SFJ00].

2.3 Knowledge Compilation for Planning

After this general overview of automated planning, let us explain how some of the
paradigms we presented take advantage of knowledge compilation. We denote as
S and A the sets of state and action variables, respectively.

2.3.1 Planning as Satisfiability

Classical Planning
Barrett [Bar03] addressed a deterministic, fully observable planning problem for
real-time embedded systems with varying goals. He proposed to use an online
planning as satisfiability approach. The solution plan is not computed offline once
and for all; a new plan is made for each current state, which makes the autonomous
system more robust to aleas.

Of course, solving a SAT problem is not tractable in the general case; the author
made use of knowledge compilation, compiling the problem into DNNFSBB [§ 1.3.4].
The work left to the online phase is the conditioning of the compiled problem by
current observations, the forgetting of intermediary states, and the extraction of a
model to obtain a solution plan. Algorithm 2.2 presents this procedure. It has been
adapted from the original work to show more clearly which queries and transfor-
mations are actually used.
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Algorithm 2.2 The online “planning as satisfiability” procedure proposed by Bar-
rett [Bar03] for real-time embedded systems.

1: input: a Boolean DNNF φ representing a planning problem
⟨
⟨S,A, γ⟩, S, SG

⟩
(with no specified initial state) on horizon n

2: input: an S0-assignment #—s0 of the state variables at step 0
3: output: a solution plan
4: compute a DNNF φ′ representing JφK| #—s0 // condition φ by #—s0
5: compute a DNNF φ′′ representing ∃S.Jφ′K // forget the intermediary states
6: return a model of φ′′

A problem with this approach is that the plan is always of length n, since the
planning problem is encoded with a fixed horizon n. A workaround is to select in
priority models in which actions are performed early.

Conformant Planning

Palacios et al. [PB+05] studied the possibility of using the planning as satisfiabil-
ity paradigm to solve conformant planning problems. More precisely, they aimed
at seeking conformant parallel plans for a planning problem with deterministic ac-
tions and uncertainty on the initial state. In the classical planning as satisfiability
framework, each model of the formula encoding the problem is a solution; this is
not the case here, since the plan must lead to the goal whatever the initial state may
be. Usual SAT solving procedures do not allow this requirement to be fulfilled.
Indeed, they work as follows: after a value has been chosen for a variable, incon-
sistent assignments of other variables are discarded. However, it is not guaranteed
that all remaining assignments correspond to strong solutions.

In order to find conformant solution plans, the authors proposed to use a pruning
step based on validity with respect to the initial states. A partial assignment of the
action variables indeed corresponds to a partial plan; if this partial plan does not
cover all possible initial states, it is useless to try to assign remaining variables—
the partial plan is said to be invalid, and can be pruned. The problem is that testing
whether a partial plan is valid with respect to the initial states is hard in general; the
authors hence identified a target language for the encoding that allows this operation
in polytime.

Checking this specific validity boils down to existentially project the current
assignment on the initial state variables, and count models: indeed, if the number
of models is less than the number of initial states, it means that some initial state is
not covered. The operations needed on the compiled form are thus FO and CT; the
authors proposed to use the d - DNNFSBB language to encode the planning problem
in their solver, using a special decomposition tree during compilation, that ensures
that the forgetting operation maintains determinism on DNNFSBB . The procedure is
described in Algorithm 2.3.
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Algorithm 2.3 The conformant planner of Palacios et al. [PB+05].
1: input: a Boolean d-DNNF φ, representing some given planning problem⟨

⟨S,A, γ⟩, S0, SG
⟩

on horizon n
2: output: a conformant plan
3: while some action variable is not determined do
4: select an action variable ai // see paper for selection details
5: compute a d-DNNFφ′ representing JφK|ai=⊤ // assign the action variable

to ⊤
6: if the number of models of ∃{S1, . . . ,Sn}.Jφ′K is equal to |S0| then
7: assign ai to ⊤ in the current plan
8: φ := φ′

9: else
10: let φ′ be a d-DNNF representing JφK|ai=⊥ // assign the action vari-

able to ⊥
11: if the number of models of ∃{S1, . . . ,Sn}.Jφ′K is equal to |S0| then
12: assign ai to ⊥ in the current plan
13: φ := φ′

14: else
15: backtrack, unassigning some action variable

2.3.2 Planning as Heuristic Search
Bonet and Geffner [BG06] applied knowledge compilation to planning in an orig-
inal way. They studied deterministic planning with penalties and rewards associ-
ated with fluents (the classical approach having been to associate them only with
actions); this allows planning problems to be modeled without real goals, but rather
with preferences among the possible outcomes, like it is the case in MDP planning.

They presented a rather simple heuristics, that roughly corresponds to the cost
of the optimal plan for the relaxed problem (that is, ignoring negative effects of
actions). The inconvenient of this heuristics is that hard computations are neces-
sary in each visited state. The proposed solution is to compile the relaxed problem
into a Boolean d-DNNF, using different encodings à la planning as satisfiability;
the preferences are simply associated with each literal in the formula. From there,
the computation of the heuristic value in each state can be done in time linear in the
compiled structure (this uses a result from Darwiche and Marquis [DM04], apply-
ing knowledge compilation to weighted bases—we do not address this part of the
knowledge compilation field in this thesis). They obtained good practical results,
but had to use workarounds to compile some problems, because regular compilation
took too much time or memory.

2.3.3 Planning as Model-Checking
The planning as (symbolic) model-checking paradigm has, since the beginning
[CG+97], taken advantage of knowledge compilation, through the use of OBDDs.
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Weak Planning
The first “planning as symbolic model-checking” algorithm, designed by Cimatti et
al. [CG+97], aimed at solving weak planning problems. The procedure is described
in Algorithm 2.4. It starts from the initial states, and recursively computes the set
of reachable states. It stops when one of the goals is reached—or when it reaches
a fixed point, in which no state is added anymore. In practice, the authors used
the SMV model-checker [McM93], which itself relies on the OBDDSBB language;
however, Algorithm 2.4 does not specify any language. It can practically be used
with any Boolean language, as long as the corresponding operations are supported,
viz., ∧BC, FO, CO, and EQ.

Algorithm 2.4 Weak planning as model-checking algorithm with forward search.
1: input: a planning problem

⟨
⟨S,A, γ⟩, S0, Sg

⟩
2: output: 1 if there exists a weak solution, and 0 otherwise
3: initialize φ so that Mod(φ) = S0
4: initialize G so that Mod(G) = Sg
5: initialize T so that Mod(T ) = { ⟨ #—s , #—a , #—s ′⟩ ∈ S ×A× S′ | #—s ′ ∈ γ( #—s , #—a ) }
6: repeat
7: if JφK ∧ JGK is consistent then // at least one of the reached states is a

goal state
8: return 1
9: φprec := φ

10: let φ′ represent ∃S.∃A.(JφK ∧ JT K) // the set of reachable next states
11: φ := φ′|S←↩S′ // next states are replaced by current states
12: until φ ≡ φprec // we repeat while some state is added
13: return 0

Algorithm 2.4 only checks whether a solution exists; to exhibit a solution, the
authors added another procedure (which we do not detail here) going backwards in
the successive sets of states.

Strong Planning
Cimatti, Roveri, and Traverso [CRT98b] used the planning as model-checking ap-
proach to build strong plans, that is to say, plans ensured to always be valid despite
non-determinism. The procedure is different from the previous one because it uses
a backward search: instead of computing a set of reachable states, it builds a set
of states to reach, starting from the goals. First, it computes the set of state-action
pairs ensuring that the goal be reached in one step, add the corresponding states
to the set of “states to reach”, then computes the set of state-action pairs ensuring
that one of these states be reached in one step, etc. The procedure is presented in
Algorithm 2.5; the authors implemented it using Boolean OBDDs, but once again,
any Boolean language supporting the necessary operations can fit.

Algorithm 2.5 keeps in δ the current policy, and in φ the set of “covered states”,
that is, the states from which the current policy is ensured to lead to one of the goals.
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Algorithm2.5 Strong planning as model checking algorithm with backward search.
1: input: a planning problem

⟨
⟨S,A, γ⟩, S0, Sg

⟩
2: output: a strong solution policy
3: initialize I so that Mod(I) = S0
4: initialize φ so that Mod(φ) = Sg
5: initialize T so that Mod(T ) = { ⟨ #—s , #—a , #—s ′⟩ ∈ S ×A× S′ | γ( #—s , #—a ) = #—s ′ }
6: initialize δ to ⊥
7: repeat
8: if φ |= I then // all initial states are covered
9: return δ

10: φ′ := φ|S′←↩S // current states are replaced by next states
11: δstep := ¬φ ∧ ∀S ′.(T → φ′) // compute the state-action pairs ensuring

to lead to a covered state
12: δ := δ ∨ δstep
13: φstep := ∃A.δstep // compute the set of newly covered states
14: φ := φ ∨ φstep
15: until φstep is inconsistent // we repeat while some state is added

Indeed, the states added toφ are those for which there exists an action (line 13) such
that all resulting states are already covered (line 11).

2.3.4 Planning with Markov Decision Processes

Hoey et al. [HS+99] explored the compilation of MDPs. Their approach was sim-
ilar to what is done in planning as model-checking: representing an MDP using
Boolean variables to express the current state #—s , the chosen action #—a , and the state
#—s ′ obtained after having applied the action in the current state. But in the case
of MDPs, contrary to Kripke structures, transitions between states have a value; it
is hence not possible to use a Boolean language. The authors employed the ADD
language [§ 1.5.1], on interpretation domain DS∪A∪S′,[0,1].

Then, the value of the ADD for each assignment is the probability associated
with the corresponding states and transition in the MDP. For example, denoting φ
the ADD, for some given assignments #—s , #—a , and #—s ′, JφK( #—s . #—a . #—s ′) is the proba-
bility to end up in #—s ′ when applying #—a in #—s—that is, the value of P #—a (

#—s , #—s ′). Us-
ing another ADD to similarly represent the reward function, the authors present an
algorithm, named SPUDD (stochastic planning using decision diagrams), to solve
an MDP planning problem, based on the classical value iteration procedure [Bel57].
The interest of SPUDD is that the operations are made on ADDs, and thus on sets
of states, rather than on single states, in the same way as in the planning as model-
checking paradigm. This allowed the authors to solve problems that classical tech-
niques could not tackle. This kind of approach has since then been extended to the
search for approximate policies [SHB00] and to the solving of first-order MDPs
[JKK09].
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***

This chapter provided an overview of automated planning, and examined vari-
ous state-of-the-art applications of knowledge compilation to this general problem.
In the next chapter, we refocus on our subject, which more specifically involves
embedded systems.
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CHAPTER

3

Orientation of the Thesis

After this general overview of knowledge compilation, planning, and how they re-
late, we center on our specific subject: studying the application of knowledge com-
pilation to realistic problems of autonomous system control. We identify several
specific problems, for which knowledge compilation could be useful, and apply
state-of-the-art techniques to one of them. Realizing their shortcomings, we decide
to study new target languages, more suitable to the compilation of our problems
than existing ones.

We first informally describe the problems we consider [§ 3.1]; then we present
our first attempt at compiling these problems [§ 3.2]; finally, we detail the general
orientation of our work [§ 3.3].

3.1 Benchmarks

We consider four benchmarks that we deem representative of realistic decision-
making problems for embedded systems. We give a rough presentation of each
generic problem; complete specification can be found either in the paper it origi-
nates from, or in Appendix A.

3.1.1 Drone Competition Benchmark
TheDrone benchmark is about the management of objectives for a micro air vehicle
(MAV) in a competition.1 This kind of competition generally involves MAVs hav-
ing to achieve a number of goals. In the Drone problem, which is adapted from
Verfaillie and Pralet [VP08b] (see Appendix A.1 for the specification of our ver-
sion), the field is divided into zones, each zone containing a target. There are three

1For example, the competition organized within the International Micro Air Vehicle Conference;
see http://www.imav2011.org/.
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different types of target, each type accounting for some specific abilities of the
MAV.

• Targets to be identified: the MAV must be able to identify which color a target
is, for example. This involves image processing, so the MAV must have an
embedded video camera, and must make a specific maneuver (an “eight”)
above the target to get enough material.

• Targets to be localized: the MAV has no information about the location of
the target in its zone, and must find it. To perform the localization task, the
MAV must make a “scanning” maneuver and inspect the whole zone using a
video camera.

• Targets to be touched: the MAV drops a ball that must reach the target. Co-
ordinates of the target are known, so we consider that no video camera is
necessary for this objective.

There is a special “home” zone, from which the MAV takes off and to which it must
return at the end. The overall goal of the Drone problem is for the MAV to take off,
accomplish all objectives, and land in the home zone, all of this within the allotted
time.

The problem is formulated as a classical planning problem using fluents, with a
constraint network representing the preconditions of actions, a constraint network
representing their effects, and some constraints representing the initial and goal
states. These constraint networks involve discrete variables, but also a continuous
one, representing the “remaining time” state variable.

We would like to compile these constraint networks, so that we can apply the
planning as satisfiability [§ 2.3.1.1] or planning as model-checking [§ 2.3.3] ap-
proaches.

3.1.2 Satellite Memory Management Benchmark

The ObsToMem problem [PV+10] manages connections between the observation
instrument and the mass memory of a satellite. The observation instrument consists
of sensors, which are organized into a set of detector lines. The information gath-
ered by each line must be compressed; this is done thanks to memory compressors
(COMs). Each detector line can be connected to only a given number of COMs;
there is generally a different number of detector lines and of COMs. If at some
point, there is no COM available to compress the output of a detector line, data is
lost. To avoid this, the satellite is equipped with more COMs than detector lines—
each COM being associated with a given set of lines.

Compressed information is then stored into the mass memory of the satellite.
This memory is divided into memory banks; each COM can write only into a given
set of memory banks. Overall, for the information at a given point to be correctly
written into memory, each detector line must be connected to an available COM,
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which must be connected to an available memory bank. The objective of this prob-
lem is to build a controller ensuring (as much as possible) that data can be written
into mass memory, even in case of COM and memory bank failures. To this end,
the controller must be able to change the configuration of the connections between
all elements.

ObsToMem is thus a control problem: its solution is a decision policy ensuring
that the requirements are permanently fulfilled. It is given in the form of several
constraint networks, representing the transition relation, the safety property (that is,
the permanent goal), and the initial state. These constraint networks do not involve
continuous variables, but a fair number of enumerated variables, with domain sizes
depending on the number of detector lines, COMs, and memory banks.

We want to compile these constraint networks, to apply for example some plan-
ning as model-checking algorithm [§ 2.3.3].

3.1.3 Transponder Connections Management Benchmark
The Telecom problem also aims at building a controller managing connections be-
tween some elements of a satellite. The object of the problem is the transponder of
a communications satellite, that is, the series of elements forming the communica-
tions channel between the receiving and the transmitting antennæ of the satellite. In
the Telecom benchmark, we only consider three elements: input and output chan-
nels, and signal amplifiers. The objective is to build a controller ensuring that input
data is correctly amplified and connected to an output channel, even in case of fail-
ures of amplifiers and channels. The problem is modelized in a different way than
ObsToMem, in that the possible configurations are given in the form of a set of
paths linking input channels, amplifiers, and output channels. See Appendix A.2
for a complete specification.

The problem is given as a constraint network on state and decision variables,
representing respectively which devices are working or not, and which path is as-
signed to each input channel. The solutions of the constraint networks are config-
urations connecting input channels to working output channels via working ampli-
fiers.

We want to compile this constraint network, either to use it directly online (each
time a failure is declared, a new configuration is sought), or to build a policy.

3.1.4 Attitude Rendezvous Benchmark
The Satellite benchmark is a part of a decision-making problem involving an Earth-
observing agile satellite, equipped with a cloud detection instrument [BVC07]. The
satellite must make very quick decisions, depending on whether the zones to be
observed are cloudy or not. One of its possible decisions is “point to the Sun and
recharge batteries”. Pointing to the sun takes time, so this is not something the
satellite should do whenever it has no observation to make—the next observation
must be sufficiently remote in time (among other requirements).
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Computing the time necessary to point towards the Sun is not trivial; it is based
on equations involving a number of continuous parameters, such as the angles rep-
resenting the current attitude of the satellite. The Satellite problem consists in de-
ciding whether it is possible to achieve the Sun pointing maneuver within the given
time. The result is then used as a parameter by the main decision-making program
embedded in the satellite.

Our objective is to compile the constraint network representing this subprob-
lem, in such a way that the decision-making program uses the compiled form and
gets a solution as fast as possible. This can be seen as a partial compilation—we
only compile a part of the problem, and leave the rest to another kind of algorithm.

3.2 A First Attempt

3.2.1 Our Approach to the Drone Problem

We started our study by trying to apply a strong planning as model-checking al-
gorithm [§ 2.3.3.2] to the Drone problem. Theoretically speaking, the strong and
weak planning problems are the same in this case, since actions are deterministic;
however, building a policy instead of a plan is more robust, because it can cope
with the imperfections of the deterministic model in practice. As long as the cur-
rent state is covered by the policy, the autonomous system is able to reach the goal.
Using the strong planning algorithm, which starts from the goal and iteratively adds
covered states, we can provide a decision even for states that are not supposed to
be encountered.

We implemented this algorithm, modifying it so that instead of stopping when-
ever it covers all initial states, it stops when no new covered states are added—that
is, when a fixed point is reached. At a fixed point, we are sure that all states from
which the goal is reachable are covered. The resulting decision policy thus covers
as much states as possible; remaining states are considered as “dead-ends”.

Our procedure compiles each constraint network (viz., preconditions and ef-
fects of actions, and goal) into OBDDSBB . It then builds the policy as an OBDD, as
described above [see also GT99]. Figure 3.1 shows the resulting policy for the in-
stance number 1. In order to compile constraint networks involving the real-valued
“remaining time” variable, the procedure arbitrarily discretizes it into small time
units, thus creating an enumerated variable of domain large enough for results to
remain significative despite the loss in precision. Then, this enumerated variable,
together with the other integer-domain variables in the problem, are replaced by a
number of Boolean variables, each one corresponding to a given bit in the binary
representation of the domain’s values. This transformation is called “log encoding”
[see e.g. SK+90, Wal00].
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Figure 3.1: Example of a policy for the Drone problem, in the form of an OBDD,
obtained using the planning as model-checking procedure. This is the instance
number 1, with 4 zones. The ⊥-node and all its incoming edges are not represented.

instance policy input largest
0 29 4274 4225
1 383 63 869 85 411
2 1219 164 176 323 222
3 4547 248 631 661 505
4 16 494 361 043 1 241 057
5 144 087 781 995 3 595 802

Table 3.1: Number of nodes of various OBDDs—solution policy, input constraint
networks, and largest OBDD encountered during computation—for six instances
of the Drone problem.

85



Chapter 3 Orientation of the Thesis

3.2.2 Results for the Drone problem
Table 3.1 shows some results obtained using this approach on a simplified version
of the Drone problem (all actions arbitrarily take the same time). We considered
different instances of this problem, with the number of objectives as a varying pa-
rameter: instance n has n zones per type of objective, which means it has 3n + 1
zones in total (including the “home” zone).

Regarding the resulting policy, this approach is fruitful: a hundred-thousand-
node policy can be handled by the embedded system. However, the largest OBDD
used by the planning algorithm contained more than 3.5 million nodes. Because of
this, we could not compile the n = 6 instance, due to a lack of memory.

3.3 Towards More Suitable Target Languages
In this section, we describe the direction we follow in this work, with respect to the
characteristics of our subject.

3.3.1 General Orientation
Instead of compiling our problems into OBDD, we decide to investigate the possibil-
ity of using a suitable target language. In particular, we would like it to be able to
represent constraint networks on Boolean variables together with enumerated and
continuous variables.

There exists several Boolean languages on enumerated variables, among which
MDD and other related decision diagrams. However, there exists no knowledge com-
pilation map of these languages. More importantly, we did not find studies about
the compilation of problems involving continuous variables.

We thus decide to define a language over continuous variables, inspired from
the decision diagram family. Yet, we do not directly transpose ordered binary de-
cision diagrams or multivalued decision diagrams in a continuous context; indeed,
these languages satisfy more queries and transformations than we need. We begin
by defining a quite general language, then apply restrictions to it so that it satis-
fies the set of queries and transformations we are interested in, while remaining as
succinct as possible.

3.3.2 Identifying Important Operations
In order to search for languages both as general as possible and suitable for our
problems, we draw up a list of the queries and transformations our languages must
satisfy for our applications to be tractable. Depending on the problem, we have two
different objectives:

• either compiling a solution to the problem, in the form of a policy;

• or compiling a part of the problem (typically, the transition relation) for the
online resolution to be tractable.
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Handling Decision Policies
In the Drone or ObsToMem benchmarks, we need to compile a decision policy, that
is, a function associating with each state a set of suitable actions—or equivalently,
a function mapping each state-action couple ⟨s, a⟩ to a Boolean value indicating
whether making action a in state s is a good choice. Such a function can be compiled
into a Boolean representation language.

In order to exploit the policy online, two basic operations are required. First,
each time a new state is observed—corresponding to a given assignment of the
state variables—the set of suitable actions must be processed. This corresponds to
conditioning the compiled form by the given assignment. The obtained structure
represents the set of “good” actions; depending on the case, it might be useful either
to list them all, which corresponds to model enumeration, or just to pick one, which
ismodel extraction. Contrary to the former two, the latter operation is not defined in
the existing knowledge compilation map. We introduce it in the following section
[§ 3.3.3].

Handling Transition Relations
In all our benchmarks, except for Satellite, we must handle transition relations, that
is, relations linking a given state s and a given action a to the state s′ resulting from
the application of a in s. These relations are representable as Boolean functions
over state variables and action variables. Once they are compiled, they can be
handled in different ways.

The simplest one is to compute, given a current state s and an action a, the set
of all possible successor states. To do this, it is necessary to condition the compiled
form by the assignment representing s and a, then to enumerate the models of the
resulting structure. Alternatively, one may need to compute the set of all possible
successor states, independently from the action to be made; in this case, it is still
necessary to condition by s, but the following step is to forget the action variables,
before enumerating the models.

An interesting use of a compiled transition relation is the construction of a de-
cision policy, using a planning as model-checking approach (for example, the pro-
cedure we described in Section 3.2). The main operations involved are bounded
conjunction and disjunction, negation, forgetting, and ensuring. The ensuring trans-
formation is not necessary when all actions are deterministic.

3.3.3 New Queries and Transformations

The operation of model extraction is needed to handle compiled decision policies
online. Since it is not considered in the knowledge compilation map literature, we
introduce it here, together with other interesting new queries and transformations.
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Definition 3.3.1 (Extraction queries). Let L be a sublanguage of GRDAG.

• L satisfies MX (model extraction) if and only if there exists a polytime algo-
rithm that maps every L-representation φ to a model of φ if there exists one,
and stops without returning anything otherwise.

• L satisfies CX (context extraction) if and only if there exists a polytime algo-
rithm that maps every L-representation φ and every variable y to Ctxtφ(y).

Extracting the context of a variable, that is, the set of its consistent values, is es-
pecially interesting when domains are non-Boolean. It can be used for example to
examine some property of the successor states in a transition relation; it has also
applications in configuration (which values are still available for this parameter?)
and diagnosis (which are the possible failure modes of this component?).

Observe that satisfaction of model or context extraction is a stronger result than
satisfaction of CO.
Proposition 3.3.2. Let L be a sublanguage of GRDAG. If L satisfies MX or CX, then it
satisfies CO.

Proof. If L satisfies MX, there exists a polynomial P and an algorithm that takes
any L-representation φ as input, stops after at most P (∥φ∥) operations, returning
a model of φ if there exists one or nothing otherwise. We can use this algorithm
to decide whether some L-representation is consistent: if it returns a model, φ is
consistent, if it returns nothing φ is not consistent. We know that the algorithm will
answer after at most P (∥φ∥) operations, P being the same for all φ: we hence have
a polytime algorithm for deciding whether anyφ is consistent or not. L satisfies CO.

If L satisfies CX, we can obtain in polytime the context of a variable y in an
L-representation φ. Once again, this information is sufficient for deciding whether
φ is consistent: thanks to Proposition 1.4.4, if we obtain a non-empty set, we can
conclude that φ is consistent, and if we obtain an empty set, we can conclude that
φ is not consistent. Using the same mechanism as for MX, we have a polytime
algorithm for deciding whether any φ is consistent or not, hence L satisfies CO.

Now, as we explained in Section 1.4.1.3, there are several ways to extend the
“conditioning” query to non-Boolean domains. We chose to keep the idea that con-
ditioning a function is assigning fixed values to some variables. But it is sometimes
necessary to restrict variables to a subset of their domain, and not to a value. This
is the role of the following transformation.
Definition 3.3.3 (Term restriction). Let L be a sublanguage of GRDAG. L satisfies
TR (term restriction) if and only if there exists a polytime algorithm mapping every
L-representation φ and every consistent term γ in L, to an L-representation of the
restriction JφK|JγK of JφK to JγK.

The term restriction transformation is thus an extension of conditioning. When
applied to Boolean variables, these two transformations are totally equivalent, as
we explained in Section 1.4.1.3. Term restriction can be used for example on a
compiled form representing a decision policy: if the observation of the current
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state is not accurate, instead of conditioning the state variables, they can be “term
restricted”. The resulting structure then represents the set of actions that may be
suitable to the unknown current state. Of course, TR is strongly related to CD, and
also to FO, by definition.

Term restriction is also related to conjunction, but not the conjunction of any
two Boolean functions. It is actually a conjunction with a term, followed by the
forgetting of the term’s variables. It is generally easy to conjoin a structure with a
term, even if the language in question does not satisfy ∧C or even ∧BC. Since this
fact is often used in proofs, we introduce the specific “conjunction with a term”
transformation, and for similar reasons, its dual “disjunction with a clause” trans-
formation.
Definition 3.3.4. Let L be a sublanguage of GRDAG.

• L satisfies ∧tC (closure under conjunction with a term) if and only if there
exists a polytime algorithm mapping every L-representation φ and every term
γ in L, to an L-representation of JφK ∧ JγK.

• L satisfies ∨clC (closure under disjunction with a clause) if and only if there ex-
ists a polytime algorithm mapping every L-representation φ and every clause
γ in L, to an L-representation of JφK ∨ JγK.

***

To sum up, we decide to examine the possibility of compiling our problems
into more suitable target languages, able to handle both continuous and discrete
variables. We remain in the GRDAG framework, but try to be as general as possible,
with the purpose of keeping succinctness maximal. The queries and transforma-
tions [see Definitions 1.4.15 and 1.4.16] we want the new languages to satisfy are
the following:

• CD andMX—mandatory, for basic handling of decision policies and transition
tables;

• ME and FO—desirable, for more complex handling of these elements;

• ∧BC, ∨BC, ¬C—necessary to apply our policy building algorithm based on
“strong planning as model-checking”;

• EN—desirable, for the aforementioned algorithm to be able to handle nonde-
terministic effects of actions.
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Introduction

When we tried to apply knowledge compilation to one of our target problems, we
stumbled upon a problem with real variables. They are usually not considered
in knowledge compilation, even though they can be useful for representing real-
world problems, notably in a planning context. Parameters having a continuous
range, such as time or energy, are generally arbitrarily discretized, so that they can
be represented as enumerated variables. For example, in the Drone problem, we
represented the “remaining time” parameter as an integer variable, decreasing pre-
cision to a fixed number of seconds. Such methods lead to variables with large
domains, which has an impact on the size of compiled structures.

We decided to investigate the efficiency of compilation languages capturing
continuous variables without requiring an arbitrary discretization, as well as dis-
crete variables with large domains. Interval diagrams [ST98] seemed a good basis,
but they were never practically applied to continuous variables nor used for plan-
ning. Moreover, since they were meant to be used for symbolic model checking,
they were designed to support equivalence, whereas we do not need it in our appli-
cations; we thus tried to relax some of the structural constraints of interval diagrams,
and defined a more general language, that we called interval automata.

This part is dedicated to the study of this language. We begin by defining in-
terval automata, giving their main properties and their knowledge compilation map
[Chapter 4]; then we present how they can be compiled [Chapter 5]; and finally,
we experiment their use for our target applications [Chapter 6].
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CHAPTER

4

Interval Automata Framework

In this chapter, we define interval automata as a target compilation language for
problems involving continuous variables. We identify a structural restriction of
interval automata allowing them to support common queries and transformations,
and in particular the main ones we need for planning.

The chapter is divided into three sections: first, we define the general language
of interval automata [§ 4.1], then introduce the sublanguage of focusing interval
automata [§ 4.2], and finally provide the knowledge compilation map of the interval
automata family [§ 4.3]. Most proofs are gathered at the end of the chapter [§ 4.4].

4.1 Language

4.1.1 Definition

The language of interval automata can be defined as a sublanguage of GRDAG; we
need to define a few notions beforehand.
Definition 4.1.1 (Interval). Let S be a set totally ordered by ⩽. Subset A ⊆ S is an
interval of S if and only if it is a convex part of S, i.e., all ⟨x, y⟩ ∈ A2 and all z ∈ S
verify x ⩽ z ⩽ y =⇒ z ∈ A.

An interval is said to be left-bounded (resp. right-bounded) if and only if it has a
lower bound (resp. an upper bound), i.e., ∃m ∈ S, ∀x ∈ A,m ⩽ x (resp. m ⩾ x)).

The greatest lower bound (resp. least upper bound) of a left-bounded (resp.
right-bounded) interval is simply called its left bound (resp. right bound).

An interval is said to be left-open (resp. right-open) if and only if it is left-
bounded (resp. right-bounded) and does not contain its left bound (resp. its right
bound), that is, ∀x ∈ A,∃m ∈ A,m < x (resp. m > x).

A closed interval is an interval that is neither left-open nor right-open.
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Note that a closed interval needs not be finite: R+ is a closed interval of R. We
will focus on intervals ofR, and denote as [a, b] the closed interval with left bound
a and right bound b, [a,+∞] the closed interval with left bound a and no right
bound, and [−∞, b] the closed interval with right bound b and no left bound. IS
denotes the set of closed intervals of S. We will need, on rare occasions, to handle
non-closed intervals; we write them with inverted brackets, such as [a, b[ for the
interval corresponding to [a, b] \ {b}.
Definition 4.1.2 (Tileability). Let S be a totally ordered set. A subset A ⊆ S is
S-tileable if and only if there exists n ∈ N and a sequence ⟨A1, . . . , An⟩ ∈ (IS)n

such that A =
∪n
i=1Ai.

An S-tileable set is thus simply a finite union of closed intervals from S. We denote
as TS the set of S-tileable sets. TR includes of course all closed intervals and all
finite subsets ofR; but note that it does not includeN. We use this notion to define
the variables used in this part; it will also be useful later [§ 7.1.1].

In this part, we need to handle real variables, as well as enumerated ones. We
choose to use R-tileable domains to cover both possibilities. Let us denote by
T = VTR the set of R-tileable variables; it has the interesting property of includ-
ing variables with a finite enumerated domain, such as {1, 3, 56, 4.87}, along with
variables with a continuous domain, such as [1, 7] ∪ [23.4, 28].

R-tileable domains are also interesting because they are directly representable
using a simple data structure, such as a list of bounds (which is not the case of an
infinite union of intervals, for example). We need to define the characteristic size
of a tileable set, that we consider representative of the memory size taken by the
data structure, independently from its actual implementation [§ 1.2.2.2].
Definition 4.1.3 (Size of a tileable set). Let S ∈ TR be anR-tileable set; we define
the characteristic size of S as the smallest number of intervals needed to cover S:

∥S∥ = min {n ∈ N | ∃⟨A1, . . . , An⟩ ∈ (IR)n, S =
∪n
i=1Ai } .

We can now give the formal definition of our language.
Definition 4.1.4. We define the IA language as the restriction of NNFIRT to represen-
tations satisfying ∧-simple decision [Def. 1.3.23].

In other words, IA-representations are GRDAGs on R-tileable variables, with lit-
erals of the form “x ∈ [a, b]”, and with structural restrictions belonging to the
“decision diagram” family [§ 1.3.5]. The name IA stands for interval automata;
but following the usage for BDDs and finite-state automata, we generally do not
handle interval automata directly in their NNF form. In the following section, we
present the equivalent “decision diagram” representation of interval automata, that
will simplify further manipulations.

4.1.2 Interval Automata
The following definition describes an interval automaton in its usual form.
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yx
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[24.4, 32]
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Figure 4.1: An example of an interval automaton. Its model set [Def. 1.4.6] is
[−10, 10] × [0, 10.6] ∪ [−10, 10] × [24.4, 32] ∪ [−10, 10] × [41, 59] ∪ [8, 67.5] ×
[0, 10.6]∪[8, 67.5]×[24.4, 32]∪[8, 67.5]×[41, 59]∪[90, 92]×[0, 10.6]∪[90, 92]×
[24.4, 32] ∪ [90, 92]× [41, 59].

Definition 4.1.5. An interval automaton (IA) is a directed acyclic multigraph with
at most one root and at most one leaf (the sink); each non-leaf node is labeled with a
variable of T or with the disjunctive symbol ⊻, and each edge is labeled by a closed
interval of R.

This definition of interval automata makes them different from the elements of the
IA language we defined in the previous section: IA is defined as a subset of NNF,
whereas the structure of Definition 4.1.5 is clearly not an NNF. However, this is
harmless, since there is a one-to-one relation between the two structures, exactly as
for BDDs [§ 1.3.5].

In the following, we always implicitly consider interval automata in this form.
Figure 4.1 gives an example of an interval automaton and of its model set. This
model set has a particular form: it is a union of cartesian products of closed inter-
vals, which we call “union of boxes”. It is not surprising, given the structure of
interval automata: they behave exactly like BDDs, and as such, their model set is
composed of all assignments compatible with at least one path. Since each path
represents a term, for example

[
x ∈ [−10, 10]

]
∧
[
y ∈ [0, 10.6]

]
for the uppermost

path, the set of its compatible assignments can only be a box. Hence, an IA always
having a finite number of paths, its model set can only be a finite union of boxes.

Using this fact, we can already state that IA is not a complete language [Defi-
nition 1.2.12].
Proposition 4.1.6. The IA language is not complete.

Proof. Let us recall that a language L = ⟨D,R, J·K⟩ is complete if and only if
every function from its interpretation domain D has a representation in R with
respect to J·K.

There are several angles from which IA can be proven incomplete; one can
use the fact that it cannot represent open intervals, for example. We use here the
argument of infinity: let x ∈ T be a variable of domain R. The Boolean function[
x ∈ N

]
is not representable as an interval automaton: if it were, N would be a

finite union of closed intervals from R.

Note that the Boolean function always returning ⊤ can be represented by the
sink-only automaton, similar to the case of BDDs. However, since IAs have only
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one leaf, the Boolean function always returning ⊥ can be represented by an empty
automaton. This is authorized by the definition, and is consistent with the interpre-
tation function of decision diagrams [§ 1.1.2.1]: since “the function returns true if
and only if there exists a compatible path”, it never returns true, as there exists no
path at all.

We treat the disjunctive symbol ⊻ as a peculiar variable, arbitrarily imposing
Dom(⊻) = {0}. Let φ be an interval automaton, N a node and E an edge in φ.
We define the following elements:

• Root(φ) is the root of φ and Sink(φ) its sink;

• Var(N) is the variable with which N is labeled (by convention, it holds that
Var(Sink(φ)) = ⊻);

• Lbl(E) is the interval with which E is labeled;

• Var(E) is the variable associated with E, viz., Var(E) = Var(Src(E)).

As suggested by Figure 4.1, the size of the automaton can be exponentially
lower than the size of its extended model set (described as a union of boxes). This
notably comes from the fact that IAs can be reduced by suppressing redundancies,
in the manner of BDDs and NNFs. Before detailing this reduction operation, let us
present the relationship between IAs and this kind of structures.

4.1.3 Relationship with the BDD family
Interval automata can be understood as a generalization of binary decision dia-
grams. The interpretation of BDDs is indeed similar to that of IAs: for a given
assignment of the variables, the function’s value is ⊤ if and only if there exists a
path from the root to the ⊤-labeled leaf such that the given assignment is consistent
with each edge along the path. When restricted to the same set of variables, BDDs
are even particular IAs.
Proposition 4.1.7. BDDIRT ⊆ IA.

Proof. BDDIRT is a sublanguage of NNFIRT , by Proposition 1.2.7. It satisfies strong
and exclusive decision. Since, by definition, strong decision implies ∧-simple de-
cision, BDDIRT is a fragment of IA.

In particular, since we considerB as a subset ofN, Boolean variables have a tileable
domain (that is, B ⊆ T ) and of course SB ⊆ IR; we thus obtain the following
important result.
Corollary 4.1.8. BDDSBB ⊆ IA.

Interval automata are thus more general than binary decision diagrams in three
ways:

• they allow more general variables and labels;
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Figure 4.2: Merging of isomorphic nodes.

• they allow non-exclusive decision nodes, and can thus be non-deterministic;

• they allow pure disjunctive nodes.

4.1.4 Reduction

Like a BDD, an interval automaton can be reduced in size without changing its se-
mantics by merging some nodes or edges. The reduction operations that we intro-
duce thereafter are based on the notions of isomorphic, stammering, and undecisive
nodes, and of contiguous and dead edges. Some of these notions are straightforward
generalizations of definitions introduced in the context of Boolean BDDs [Bry86],
while others are specific to interval automata.
Definition 4.1.9 (Isomorphic nodes). Two non-leaf nodesN1 andN2 of an IA φ are
isomorphic if and only if:

(i) Var(N1) = Var(N2);

(ii) there exists a bijection σ from Out(N1) to Out(N2), such that for each edge
E ∈ Out(N1), Lbl(E) = Lbl(σ(E)) and Dest(E) = Dest(σ(E)).

Isomorphic nodes are redundant, as they represent the same function; only one of
the two is necessary (see Figure 4.2). This corresponds to the usual procedure on
BDDs (and generally on DAG languages).
Definition 4.1.10 (Undecisive node). A nodeN of an IA φ is undecisive if and only
if |Out(N)| = 1, and E ∈ Out(N) is such that Dom(Var(E)) ⊆ Lbl(E).

An undecisive node does not restrict the solutions corresponding to the paths it is
in; it is “automatically” crossed (see Figure 4.3).
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x y
[3, 6.6] [0, 100]

⇓

x
[3, 6.6]

Figure 4.3: Elimination of an undecisive node (here Dom(y) = [0, 10]).

x
[−159, 0]

[0, 74]
⇒ x

[−159, 74]

Figure 4.4: Merging of contiguous edges.

Definition 4.1.11 (Contiguous edges). Two edgesE1 andE2 of an IA φ are contigu-
ous if and only if:

(i) Src(E1) = Src(E2);

(ii) Dest(E1) = Dest(E2);

(iii) there exists an interval A ⊆ R such that A ∩ Dom(Var(E1)) = (Lbl(E1) ∪
Lbl(E2)) ∩ Dom(Var(E1)).

Two contiguous edges come from the same node, point to the same node, and are
not disjoint (modulo the domain of their variable): they can be replaced by a single
edge (see Figure 4.4). For example, in the case of an integer-valued variable, a
couple of edges respectively labeled [0, 3] and [4, 8] is equivalent to a single edge
labeled [0, 8].

Elimination of undecisive nodes and redundant edges altogether corresponds
to the elimination of “redundant nodes” in the context of Boolean BDDs (nodes
having only one child).
Definition 4.1.12 (Stammering node). A non-root nodeN of an IA φ is stammering
if and only if all parent nodes of N are labeled by Var(N), and either |Out(N)| = 1
or |In(N)| = 1.

Stammering nodes are not necessary, because the information they bring can harm-
lessly be transferred to their parents (see Figure 4.5).
Definition 4.1.13 (Dead edge). An edgeE of an IA φ is dead if and only if Lbl(E)∩
Dom(Var(E)) = ∅.

A dead edge can never be crossed, as no value in its label is consistent with the
variable domain (see Figure 4.6).
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Figure 4.5: Merging of a stammering node.

x
[3, 4]

[−10,−2.5]
⇒ x

[3, 4]

Figure 4.6: Elimination of a dead edge (here Dom(x) = R+).

Definition 4.1.14 (Reduced interval automaton). An interval automaton φ is said to
be reduced if and only if:

(i) no node of φ is isomorphic to another, stammering, or undecisive;

(ii) no edge of φ is contiguous to another or dead.

In the following, we generally consider only reduced IAs; reduction is indeed
“harmless”, since it can be done in time polynomial in the size of the structure.
Proposition 4.1.15 (Reduction of an IA). There exists a polytime algorithm that
transforms any IA φ into an equivalent reduced IA φ′ such that ∥φ′∥ ⩽ ∥φ∥.

Detailed proof p. 112.

Algorithm 4.1 is an example of a polynomial reduction procedure—although it
is certainly not the best one. Since each operation can modify previously reduced
nodes, traversals must be repeated until a fixed point is reached. All elementary
operations are polynomial, and no node or edge is added throughout each traversal,
therefore these elementary operations are not executed more than ∥φ∥ times (see
the complete proof for details).

Like reduced non-ordered BDDs on Boolean variables, reduced IAs are not
canonical: as we show in the knowledge compilation map, IA does not support
the equivalence query. However, reduction has interesting properties; it notably
removes superfluous disjunctive nodes, as expressed by the following proposition.
Proposition 4.1.16. The only reduced IAs φ such that Scope(φ) = ∅ are the empty
and the sink-only automata.

Detailed proof p. 113.
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Algorithm 4.1 Reduction algorithm for IAs. At any time during process, if an edge
has no source or destination, it is removed; so are non-leaf nodes with no outgoing
edge and non-root nodes with no incoming edge.

1: repeat
2: for each node N in φ, from the root to the sink do
3: if N is stammering then
4: for each ⟨Ein, Eout⟩ ∈ In(N)× Out(N) do
5: add an edge from Src(Ein) to Dest(Eout) labeled with the

interval Lbl(Ein) ∩ Lbl(Eout)
6: remove N
7: else
8: for each E ∈ Out(N) do
9: if E is dead then

10: remove E
11: else
12: mark E
13: for each E′ ∈ Out(N) such that E′ is not marked do
14: if E and E′ are contiguous then
15: let U := Lbl(E) ∪ Lbl(E′)
16: label E with [min(U),max(U)]
17: remove E′

18: if N is undecisive then
19: for each Ein ∈ In(N) do
20: redirect Ein to the child of N
21: remove N
22: else
23: for each node N ′ in φ, from the root to the sink do
24: if N and N ′ are isomorphic then
25: for each Ein ∈ In(N) do
26: redirect Ein to N ′

27: remove N
28: until φ has not changed during process
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4.2 Efficient Sublanguage

We now study the efficiency of IA on the queries needed in our planning context
[§ 3.3.2]. This raises the need for sublanguages of IA having better performances;
we then propose a sublanguage that is more efficient than IA.

4.2.1 Important Requests on Interval Automata

The first operation we study is conditioning, that consists in assigning values to
some variables. It is actually possible to do this using a simple, syntactic proce-
dure, detailed in Algorithm 4.2. In broad outline, for each edge in the graph, the
procedure checks whether it contains the value to assign; it keeps the edges that do
and removes the edges that do not.
Proposition 4.2.1. IA satisfies CD.

Detailed proof p. 113.

Algorithm 4.2 Conditioning of an IA φ by an assignment #—y of a set of variables
Y .

1: for each node N in φ, from the sink to the root do
2: if Var(N) ∈ Y then
3: for each E ∈ Out(N) do
4: if #—y |Var(N) ∈ Lbl(E) then
5: label E by {0}
6: else
7: label E by ∅
8: label N by ⊻

Thus, conditioning is quite direct on interval automata. The next operation we
need is the model extraction query. Unfortunately, this query is not supported by
IA, basically because it is not supported by BDDSBB , and BDDSBB is a sublanguage of
IA [Corollary 4.1.8].
Proposition 4.2.2. IA does not satisfy MX unless P = NP.

Detailed proof p. 114.

This relates to the fact that deciding whether an interval automata is consistent
is not tractable. One of the reasons for this, is that sets restricting a variable along
a path can be conflicting: it is possible to have an edge “x ∈ [1, 4]” followed by an
edge “x ∈ [8, 10]”, which makes the path inconsistent. Hence, in the worst case, all
paths must be explored before a consistent one is found. Note that reduction does
not help; Figure 4.7 shows an example of a reduced IA containing no consistent
path at all.
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Figure 4.7: Example of a reduced IA in which no path is consistent. Before the IA
is proven inconsistent, every path must be checked.

Since the MX query is fundamental in our applications, we cannot work with
raw interval automata; we must impose structural restrictions allowing the model
extraction query, and hence the consistency query too (by Prop. 3.3.2) to be poly-
nomial.

4.2.2 Focusingness
One of the aspects that makes consistency checking hard on interval automata, is
that paths can be inconsistent, because labels can be disjoint on a given path. We
want to define a sublanguage of IA that forbids this behavior. The solution we
propose is to force intervals pertaining to a given variable to shrink from the root
to the sink.
Definition 4.2.3 (Focusingness). An edgeE in an interval automatonφ is focusing if
and only if all edgesE′ on all paths from the root of φ to Src(E) such that Var(E) =
Var(E′) verify Lbl(E) ⊆ Lbl(E′).

An interval automaton φ is focusing with respect to x, with x ∈ Scope(φ), if
and only if each edge E in φ for which Var(E) = x is focusing.

A focusing interval automaton (FIA) is an IA φ that is focusing with respect to
all variables in Scope(φ). FIA is the restriction of IA to focusing interval automata.

An example of an FIA can be found on Figure 4.8. Note that focusingness is only
defined on variables from Scope(φ): ⊻-nodes are not concerned by this restriction.
This makes the definition a little more complex, but simplifies later proofs.

x

x

y

x

y
[1.3, 1.78]

[−10, 134]

[1, 2]

[7, 13]

[0, 15]

[5, 20]

Figure 4.8: An example of a focusing interval automaton. Variable domains are as
follows: Dom(x) = [0, 100], Dom(y) = [0, 100] and Dom(z) = {0, 3, 7, 10}.

Imposing focusingness prevents labels from “conflicting”—in the sense that
there cannot be some path containing “x ∈ [1, 8]” and then “x ∈ [5, 15]”. However,
focusingness alone does not make all paths consistent: nothing prevents labels from
being empty, or disjoint with the domain. Fortunately, these cases are removed by
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reduction. Polynomiality of FIA reduction is thus an important result, which is the
object of the following proposition.
Proposition 4.2.4 (Reduction of an FIA). There exists a polytime algorithm that
transforms any FIA φ into an equivalent reduced FIA φ′ such that ∥φ′∥ ⩽ ∥φ∥.

Detailed proof p. 114.

The proof relies on the fact that the procedure described in Algorithm 4.1, initially
designed to reduce general interval automata, actually maintains focusingness. Af-
ter reduction, all paths in an FIA are consistent—exactly as is the case for read-once
decision diagrams. For that matter, we get an interesting result about the relation-
ship between FIAs and FBDDs.
Proposition 4.2.5. It holds that FBDDIRT ⊆ FIA, and in particular that FBDDSBB ⊆
FIA.

Proof. We know that BDDIRT ⊆ IA [Prop. 4.1.7], therefore of course FBDDIRT ⊆
IA. Now, in a read-once decision diagram, variables are never repeated along a
path, which obviously means that all edges are focusing: each one has no ancestor
pertaining to its variable. This proves that read-once decision diagrams are focus-
ing, and hence that FBDDIRT ⊆ FIA. Since SB ⊆ IR and B ⊆ T , we get that
FBDDSBB ⊆ FIA.

Let us now show that the operations we are interested in are tractable on FIAs,
starting with conditioning. Once again, the algorithm designed for general IAs
maintains focusingness. This is used to prove the following proposition.
Proposition 4.2.6. FIA satisfies CD.

Detailed proof p. 115.

Before examining model extraction, let us remark that reduction makes consis-
tency checking tractable on focusing interval automata. It can actually be proven
that a reduced FIA is inconsistent if and only if it is empty: roughly speaking, the
only thing that can compromise the consistency of an FIA is the fact that labels can
go out of a variable’s domain, which is impossible on a reduced FIA.
Proposition 4.2.7. FIA satisfies CO.

Detailed proof p. 115.

It can be seen in a different way: every path in a reduced FIA is consistent, hence
if there exists a path, then the FIA is consistent. We use this property on paths to
extract a model from an FIA.
Proposition 4.2.8. FIA satisfies MX.

Detailed proof p. 115.

The procedure is described in Algorithm 4.3. The idea is to reduce the FIA and
choose an arbitrary path in the automaton (the choice does not matter, since all
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paths are consistent), then choose an arbitrary assignment that is compatible with
this path.

Algorithm 4.3 Extraction of a model from an FIA φ.
1: reduce φ
2: if φ is empty then
3: exit
4: let #—y ∈ Dom(Scope(φ))
5: let S := {⊻}
6: let node N := Sink(φ)
7: while N ̸= Root(φ) do
8: select an edge E ∈ In(N)
9: let x := Var(E)

10: if x /∈ S then
11: select a value ω ∈ Lbl(E) ∩ Dom(x)
12: let #—x be the {x}-assignment of value ω
13: #—y := #—x . #—y | Scope(φ)\{x}
14: S := S ∪ {x}
15: N := Src(E)
16: return #—y

Hence, unlike raw IAs, FIAs support the main requests needed for planning
applications. Moreover, as we show in Chapter 5, interval automata obtained ex-
ploiting the trace of an interval-based constraint solver are naturally focusing. FIA
is thus a good candidate for our applications; this is why all experiments on interval
automata are done using FIAs [Chapter 6].

Before examining the construction of FIAs, and experimenting their practical
use, let us build the knowledge compilation map of IA and FIA, including all the
queries and transformations we mentioned in Chapters 1 and 3.

4.3 The Knowledge Compilation Map of IA

This section contains the knowledge compilation map of the IA family. For the
sake of readability, we gathered most of the proofs at the end of the chapter [§ 4.4].
Before stating the complete results, we emphasize in the next section a few key
points on which most proofs depend.

4.3.1 Preliminaries

Context on FIAs
To extract the context of a variable x in an FIA, we use the same property that we
used to check consistency and extract a model. Namely, on a path from the root to
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the sink of a reduced FIA, values included in the label of the last x-edge are either
consistent or out of the domain. Algorithm 4.4 uses this property to compute the
context of a variable in an FIA.
Proposition 4.3.1. FIA satisfies CX.

Detailed proof p. 116.

Algorithm 4.4 Extraction of the context of a variable x in an FIA φ

1: reduce φ
2: if φ is empty then
3: return ∅
4: let C := ∅
5: mark the sink of φ
6: for each node N in φ, ordered from the sink to the root do
7: if N is marked then
8: for each E ∈ In(N) do
9: if Var(E) = x then

10: C := C ∪ Lbl(E) ∩ Dom(x)
11: else
12: mark Src(E)
13: if the root of φ is marked then
14: return Dom(x)
15: return C

The idea is to find the x-frontier of the sink, that is to say the set of x-labeled
nodes N such that there exists a path from a child of N to the sink that does not
mention x. In other words, nodes on the x-frontier are the x-nodes that are the
closest to the sink. The x-frontier is computed by pulling up a mark, that means
no x-labeled node has been encountered yet. If a mark reaches the root, it means
there is at least one path from the root to the sink containing no x-node. In this
case, the context of x in φ is Dom(x) (because φ is reduced, so the path is trivially
satisfiable, in the same way that a non-empty reduced FIA is satisfiable). If no mark
reaches the root, the context of x is the intersection of the domain of x and of the
union C of the labels of the edges by which the x-frontier accesses the sink.

Clausal Entailment on FIAs
The goal of the clausal entailment query CE is to decide whether a Boolean function
entails a clause. In the IA framework, it consists in checking whether φ |=

[
x1 ∈

I1
]
∨ · · · ∨

[
xk ∈ Ik

]
, with φ an IA, x1, . . . xk some variables, and I1, . . . Ik some

closed intervals. It is equivalent to checking whether JφK ∧
[
x1 /∈ I1

]
∧ · · · ∧[

xk /∈ Ik
]

is inconsistent. As it involves open intervals, this formula is generally
not representable as an interval automaton; however, we can build in polytime the
restriction of φ to the “term”

[
x1 /∈ I1

]
∧ · · · ∧

[
xk /∈ Ik

]
, which is consistent if

and only if the non-representable formula is consistent.
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Proposition 4.3.2. FIA satisfies CE.

Detailed proof p. 118.

Combining Automata
Let us remark that computing the disjunction of interval automata is trivial—thanks
to disjunctive nodes.
Proposition 4.3.3. IA and FIA satisfy ∨C, ∨BC, and ∨clC.

Proof. It is sufficient to “join” all IAs together using a ⊻-node. That is, denoting
as Φ = {φ1, . . . , φk} the set of IAs to be disjoined, we copy all IAs in Φ into
ψ, fuse their sinks, and create a new root node for ψ, labeled ⊻, with |Φ| outgoing
edges labeled by {0}, each pointing to the root of a differentφ ∈ Φ. This procedure
is obviously linear in

∑
φ∈Φ∥φ∥. It moreover maintains focusingness (no label is

modified).

Computing the conjunction of interval automata is also quite simple, as long as
the resulting automaton is not required to be focusing. The idea is to connect the
automata one to another.
Proposition 4.3.4. IA satisfies ∧C, ∧BC, and ∧tC.

Proof. It is sufficient to “join” all IAs together into a chain, that is, denoting as
Φ = {φ1, . . . , φk} the set of IAs to be conjoined, to replace the sink of φi by the
root of φi+1, for all i ∈ {1, . . . , k − 1}. The root of the resulting automaton ψ is
then set to be Root(φ1), and its sink is Sink(φk). This procedure is obviously linear
in

∑
φ∈Φ∥φ∥.

This simple procedure does not maintain focusingness; it is actually impossible to
obtain the conjunction of two FIAs in polytime, unless P = NP.
Proposition 4.3.5. FIA does not satisfy ∧BC or ∧C unless P = NP.

Detailed proof p. 118.

We can nevertheless translate any term into an FIA in polytime.
Lemma 4.3.6. It holds that FIA ⩽p termIRT .

Proof. If the term contains only one literal for each variable in its scope, we can
directly use the procedure described for making the conjunction of raw IAs: each
literal can be turned into a one-edge IA, and since all the IAs obtained do not share
variables, they can be put in a chain satisfying the read-once property, and thus also
focusingness. If the term contains several literals on a same variable, it suffices
to transform all these literals into a unique one, labeled with the intersection of all
intervals, hence falling back into the first case.

Meshes and Single Quantification
A number of proofs of queries or transformations use the fact that labels of all
x-edges in an interval automaton induce a partition of Dom(x), as shown in Fig-
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Figure 4.9: An IA over variables x and y, of domain [0, 10] and [0, 1], respectively.
The partitions (meshes) it induces over these two domains is shown below; note
that each element of a partition is either fully included in or completely disjoint
from any label.

ure 4.9. The elements of this partition have the property of being finer than any
x-label in the automaton. We call such a partition a mesh.
Definition 4.3.7 (Mesh). Let φ be an IA and x ∈ Scope(φ). A mesh of x in φ is a
partition M = {M1, . . . ,Mn} of Dom(x) such that for any edge E in φ verifying
Var(E) = x, for all i ∈ {1, . . . , n},

Mi ∩ Lbl(E) ̸= ∅ =⇒ Mi ⊆ Lbl(E).

Meshes have very interesting properties, that come from the following fact: if [a, b]
is one of the intervals of a mesh of x in φ, then conditioning φ by assigning x to
any value in [a, b] always yields the same result. We can say that all values in [a, b]
are “interchangeable”. In particular, quantification operations on interval automata
boil down to conditioning operations; both the proof of SFO on IA and FIA, and the
proof of SEN on IA, use this mechanism.
Proposition 4.3.8. Let L be a sublanguage of IA; if L satisfies CD and ∨C, then it
satisfies SFO. If L satisfies CD and ∧C, then it satisfies SEN.

Detailed proof p. 120.

4.3.2 Succinctness

An important result concerns the relationship between the IA family and the CNF
and DNF languages.
Proposition 4.3.9. It holds that

IA
FIA ⩽p DNFIRT
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and
IA ⩽p CNFIRT .

Proof. IA satisfies ∧C and ∨C, so CNFs and DNFs can be directly transformed
into IAs. FIA does not satisfy ∧C, but since terms can be transformed into FIAs in
polytime thanks to Lemma 4.3.6, and FIA satisfies ∨C, any DNF can be transformed
into an FIA in polytime.

In order to prove negative results about succinctness, we rely on an important
lemma, due to Kautz and Selman [KS92a].
Lemma 4.3.10. It is impossible to find a polysize compilation function comp such
that for any propositional CNF Σ and any propositional clause γ, checking whether
Σ |= γ using comp(Σ) can be done in polytime, unless the polynomial hierarchy
PH collapses at the second level.

We use in particular a corollary of this lemma, using a more “knowledge compila-
tion map”-oriented terminology.
Lemma 4.3.11. Let L be a Boolean representation language satisfying CE. It holds
that L ⩽̸s CNFSBB unless PH collapses at the second level.

This allows us to prove that FIA is strictly less succinct than IA, modulo the collapse
of PH.
Proposition 4.3.12. It holds that FIA ⩽̸s IA unless PH collapses.

Proof. We know that FIA supports CE [Prop. 4.3.2]. Thanks to Lemma 4.3.11,
we get that FIA cannot be at least as succinct as CNFSBB unless PH collapses.

Now, IA ⩽s CNFSBB holds, as a direct consequence of Proposition 4.3.9. There-
fore, if FIA ⩽s IA were true, this would mean that FIA ⩽s CNFSBB by transitivity—
yet it is impossible unless PH collapses. Hence FIA ⩽̸s IA, unless PH collapses.

Theorem 4.3.13. The results in Figure 4.10 hold.

Proof. Direct from Propositions 4.1.7, 4.2.5, 4.3.9, and 4.3.12, and from various
inclusions between languages.

4.3.3 Queries and Transformations
Theorem 4.3.14. The results in Tables 4.1 and 4.2 hold.

Detailed proof p. 124.

Many of the proofs directly follow some result from the existing compilation map
[Theorem 1.4.18]. For example, the fact that IA does not support any query except
for MC comes from the fact that BDDSBB does not either: since BDDSBB ⊆ IA, IA
cannot support queries unsupported by BDDSBB , as stated in Proposition 1.2.18.

This makes IA weak with respect to the vast majority of queries. Imposing fo-
cusingness makes more queries tractable, including CO and MX, that are especially
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Figure 4.10: Relative succinctness of IA, FIA, and various languages over R-
tileable and Boolean variables. On an edge linking L1 and L2, if there is an arrow
pointing towards L1, it means that L1 ⩽s L2. If there is no symbol on L1’s side
(neither an arrow nor a circle), it means that L1 ⩽̸s L2. If there is a circle on L1’s
side, it means that it is unknown whether L1 ⩽s L2 or L1 ⩽̸s L2 holds. Relations
deducible by transitivity are not represented, which means that two fragments not
being ancestors to each other are incomparable with respect to succinctness.
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√

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FIA

√
◦

√ √
◦ ◦ ◦

√ √
◦

√

Table 4.1: Results about queries;
√

means “satisfies”, and ◦ means “does not sat-
isfy, unless P = NP”.
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∨
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C

∧
C

∧
B
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∧
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IA
√

◦ ◦
√

◦
√ √ √ √ √ √ √

FIA
√ √ √ √

◦ ◦
√ √ √

◦ ◦
√

Table 4.2: Results about transformations;
√

means “satisfies”, and ◦ means “does
not satisfy, unless P = NP”.
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important in our context. Interestingly enough, not so many transformations are
rendered untractable by this restrictive property. Some even become polynomial,
such as forgetting. This makes FIA close to DNNF in terms of knowledge compila-
tion “profile”, despite FIA not being a decomposable language.

Note that the negation transformation (¬C) does not appear in the table. This
is a matter of expressivity: indeed, the IA language is not closed under negation,
because open intervals cannot be represented.

As a side note, a corollary of this theorem is that neither reduced IAs nor re-
duced FIAs are canonical—contrary to OBDDs—since if they were, EQ would be
polytime.

***

Now that theoretical aspects of IAs are known, next chapter (starting page 127,
after the proofs) deals with a more practical side, namely the actual compilation
into IA, and more precisely, into FIA.

4.4 Chapter Proofs

4.4.1 Reduction
Proof of Proposition 4.1.15 [p. 101]. We prove that Algorithm 4.1 [p. 102] is
polytime and transforms any IAφ into an equivalent reduced IAφ′ such that ∥φ′∥ ⩽
∥φ∥. Let us apply Algorithm 4.1 on an IA φ.

For a given node N :

• the operation of line 3 suppresses N if it is stammering;

• the operation of line 9 suppresses all dead outgoing edges of N ;

• the operation of line 14 suppresses all contiguous outgoing edges of N ;

• the operation of line 18 suppresses N if it is undecisive;

• the operation of line 24 suppresses all nodes that are isomorphic to N .

and the algorithm stops when no operation has to be applied, so obviously the re-
sulting IA is reduced. Moreover, it is easy to verify that each operation leaves the
semantics of φ unchanged. Finally, every operation removes strictly more edges
or nodes than it creates; indeed, the only operation that creates anything is one re-
moving stammering nodes, and recall that either In(Ni) or Out(Ni) contains only
one element.

This proves that

(i) the algorithm eventually stops (once the IA is empty, it cannot change any-
more);
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(ii) the size of the resulting IA is lower than ∥φ∥ (the only case where the size
does not change is when the input IA is already reduced).

The computation for each node is clearly polynomial; the only difficulty is
checking whether two disjoint edges are contiguous. This can simply be done by
verifying whether (I1∪I2)∩Dom(x) = Imin∩Dom(x), where Imin is the narrowest
interval covering (I1 ∪ I2) ∩ Dom(x). It can be shown that if the property is not
true for Imin, it cannot be true for any I . Now, the traversal loop (line 2) handles
each node once; as a result, what is inside the outer loop (from line 1 to line 27) is
processed in polytime.

Since reducibility properties are not mutually independent, the traversal must
be repeated while it has modified something in φ (line 28). This does not change
polynomiality: a traversal always lowers the size of φ (except of course for the last
one), therefore the traversal loop is not repeated more than ∥φ∥ times.

Note that there obviously exists more efficient methods to reduce an IA, but the
only point here is to show that this operation is polytime.

Proof of Proposition 4.1.16 [p. 101]. Let φ be an IA such that Scope(φ) = ∅.
We show that φ is either the empty or the sink-only automaton.

Scope(φ) = ∅ means that φ does not mention any variable; if it has non-
leaf nodes, they can thus only be ⊻-nodes. We show that φ does not contain ⊻-
nodes. Suppose it contains at least one ⊻-node: there must exist a node N all
the outgoing edges of which point to the sink (because IAs are acyclic DAGs,
which means that there always exists a topological sorting of their nodes [see e.g.
CL+01, § 22.4]). Since φ is reduced, each outgoing edge E ∈ Out(N) veri-
fies Lbl(E) ∩ Dom(Var(E)) ̸= ∅; since Var(E) = ⊻ and Dom(⊻) = {0},
it implies that

∩
E∈Out(N) Lbl(E) = {0}. Hence, there is only one edge E go-

ing out of N (φ is reduced, so there are no contiguous edges). This edge verifies
Dom(Var(E)) ⊆ Lbl(E), hence N is undecisive, which is impossible since φ is
reduced. Therefore, φ does not contain any ⊻-node—and since it cannot contain
any other non-leaf node, it is either the empty or the sink-only automaton.

4.4.2 Sublanguages

Proof of Proposition 4.2.1 [p. 103]. We prove that there exists a linear algorithm
mapping every IA φ and every assignment #—y to an IA equivalent to the restrictionJφK| #—y of JφK to #—y .

Let φ be an IA, Y ⊆ TR a set ofR-tileable variables, and #—y a Y -assignment.
We denote as φ| #—y the IA obtained by applying Algorithm 4.2 [p. 103] on φ and #—y .
Automaton φ| #—y is obtained in time linear in ∥φ∥; let us now show that Jφ| #—y K ≡JφK| #—y .

By definition of the conditioning, #—z ∈ Dom(Scope(φ)\Y ) is a model of JφK| #—y
if and only if #—y . #—z is a model of φ.
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(⇐) Suppose that #—y . #—z is a model of φ. Then there is in φ a path p compatible
with #—z . #—y . By construction, a copy p′ of p exists inφ| #—y , and #—z is compatible
with p′: #—z is a model of φ| #—y .

(⇒) Suppose that #—y . #—z is a not model of φ. Any path p in φ contains an edge E
such that ( #—y . #—z )|Var(E) /∈ Lbl(E). Recall that paths in φ| #—y are the same as
those in φ, and let p′ be the one corresponding to p. If Var(E) ∈ Y , the fact
that ( #—y . #—z )|Var(E) /∈ Lbl(E) has led the algorithm to label the correspond-
ing edge in φ| #—y by ∅. Consequently, #—z cannot be compatible with this path.
If Var(E) /∈ Y , ( #—y . #—z )|Var(E) /∈ Lbl(E) means that #—z |Var(E) /∈ Lbl(E):
because such edges remain unchanged in φ| #—y , #—z cannot be compatible with
p′. Therefore #—z is incompatible with all paths in φ| #—y , and #—z is thus not a
model of φ| #—y .

Hence Jφ| #—y K ≡ JφK| #—y .

Lemma 4.4.1. IA does not satisfy CO, VA, CE, IM, EQ, SE, MX, CX, CT, or ME, unless
P = NP.

Proof. Corollary 4.1.8 states that BDDSBB ⊆ IA. This implies that BDDSBB ⩾p IA
[Prop. 1.2.15], and thus all queries supported by IA are also supported by BDDSBB
[Prop. 1.2.18]. Since Theorem 1.4.18 states that BDDSBB does not satisfy CO, VA,
CE, IM, EQ, SE, CT, or ME, unless P = NP, IA cannot satisfy any of these queries.

In addition, since both MX and CX respectively imply CO [Prop. 3.3.2], it proves
that IA does not satisfy MX or CX unless P = NP.

Proof of Proposition 4.2.2 [p. 103]. The result is stated in Lemma 4.4.1.

Proof of Proposition 4.2.4 [p. 105]. We first show that Algorithm 4.1 [p. 102]
maintains the property of focusing with respect to a given variable. Let φ be an IA
that is focusing w.r.t. y ∈ Scope(φ). Let us suppose that the algorithm is treating
node N , with Var(N) = y.

• “Stammering” operation: let E ∈ Out(N) and E′ be an edge on a path from
Dest(E) to the sink such that Var(E′) = y. E′ is focusing, so Lbl(E′) ⊆
Lbl(E). Thus Lbl(E′) ⊆ Lbl(E) ∩ Lbl(Ein) for any Ein ∈ In(N). Hence
E′ is still focusing after the “stammering” operation.

• “Dead” operation: suppressing edges does not have any influence on the
focusingness of other edges in the graph.

• “Contiguous” operation: the two contiguous edges point to the same node,
so every descendant edgeE associated with y is such that Lbl(E) is included
in the label of both contiguous edges; hence it is included in their union.

• “Undecisive” operation: every descendant edge of the child of N is also a
descendant edge ofN , so this operation does not compromise their focusing-
ness.
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• “Isomorphism” operation: since every outgoing edge of every node isomor-
phic to N is focusing, redirecting all the parent edges to N is harmless.

Hence Algorithm 4.1 maintains the property of focusing with respect to a given
variable.

Now, suppose it is applied to an FIA φ; since by definition, φ is focusing with
respect to all variables in Scope(φ), the resulting IA also is. The algorithm thus
maintains the focusing property, hence the result.

Proof of Proposition 4.2.6 [p. 105]. We show that Algorithm 4.2 [p. 103] main-
tains focusingness. Let φ be a FIA, Y ⊆ TR a set of R-tileable variables, and #—y
a Y -assignment. Let φ| #—y be the IA defined in the proof of Proposition 4.2.1. We
show that φ| #—y is focusing.

Indeed, inφ| #—y the only edges that have been modified are those that correspond
to edges in φ associated with a variable in Y . In φ| #—y , these modified edges are all
associated with ⊻, and thus are not concerned by the focusingness restriction (see
Definition 4.2.3).

As for the other edges in φ| #—y , since they all remain unchanged, they are still
focusing. Consequently, φ| #—y is focusing w.r.t. all variables from Scope(φ) \ Y =
Scope(φ| #—y ); it is thus a FIA. Hence, Algorithm 4.2 maintains focusingness, which
proves that FIA supports CD.

Proof of Proposition 4.2.7 [p. 105]. Let φ be a reduced FIA; we prove that φ is
empty if and only if it is inconsistent. The implication is trivial; now let us suppose
that φ is not empty. If it is the sink-only automaton, it is obviously consistent. In
the other case, it has at least one non-⊻ edge, since a reduced IA cannot contain
only ⊻-nodes [Prop. 4.1.16].

Let us consider a non-⊻ edge E. Because φ is reduced, there is no dead edge:
Lbl(E) contains at least one value ω ∈ Dom(Var(E)). As E is focusing, ω is
coherent with all the preceding edges in φ. Since it is the case for all non-⊻ edges,
φ cannot be inconsistent.

Thanks to the fact that reduction is polynomial on FIAs [Proposition 4.2.4], we
overall get that FIA satisfies CO.

Proof of Proposition 4.2.8 [p. 105]. We prove that Algorithm 4.3 [p. 106] is poly-
nomial, and that when given an FIA φ, it returns a model of φ if φ is consistent,
and stops without returning anything otherwise.

Let us first show that it is polynomial in ∥φ∥. It is clear enough, since reduction
is polynomial, and the edge and value selection steps can be done in constant time.
Since the procedure explores a single path, it cannot loop more than ∥φ∥ times,
hence the polynomiality of the whole procedure.

Now, the reduction step eliminates the case when φ is inconsistent. Let us
prove that the assignment the procedure returns is a model of φ. Starting from the
sink, we choose a path to the root. On the chosen path, each time a new variable is
encountered, a value is selected, that is compatible with the edge label and with the
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variable domain. Such a value exists, since φ is reduced. Because we do this only
when we encounter each variable for the first time, we can be sure that the selected
value is consistent: it is included in all other labels pertaining to this variable from
this node upwards, since the automaton is focusing. Since variables in Scope(φ)
that have not been encountered on the chosen path had already been set to a random
value in their domain (line 4), the assignment #—y returned by this algorithm is a
model of φ.

4.4.3 Preliminaries to the Map
Context on FIAs

Proof of Proposition 4.3.1 [p. 107]. Algorithm 4.4 [p. 107] is polynomial: each
node and edge is encountered at most once, and the per-edge treatment is polyno-
mial. Now, we prove that when given an FIA φ and a variable x, it returns the
context of x in φ.

First, the procedure reduces the FIA φ. If it is empty, it is inconsistent: an
empty context is returned. If it is not empty, it is consistent [see proof of Prop. 4.2.7,
p. 115], and every path is a consistent path.

If a node N is marked, by contruction, it means that there exists a path from N
to the sink not mentioning x. If N is the root, it obviously means that Ctxtφ(x) =
Dom(x), since all paths are consistent.

Let us suppose that the root is not marked. We consider a marked node N and
an edge E pointing to N . If Var(E) = x, there exists a path from the root to the
sink of φ in which E is the last x-edge (since N is marked). Thanks to the fact
that φ is focusing, E is included in the label of all its ancestor edges: all values in
Lbl(E) are consistent—except for those that are not in Dom(x).

This proves thatC ⊆ Ctxtφ(x). Let us now prove thatC ⊇ Ctxtφ(x): consider
a value ω ∈ Ctxtφ(x). Since the root is not marked, every path in φ contains at
least one x-edge. There must exist an edge E such that ω ∈ Lbl(E), otherwise ω
could obviously not be a consistent value. Suppose there exists no path in which
the label of the last x-edge contains ω. Then all paths from Dest(E) to the sink
contain an x-edge not mentioning ω. Thus, there cannot be a model of φ in which
x is assigned to ω. This is a contradiction, since ω is supposed to be a consistent
value. As a consequence, there exists a path in which the label of the last x-edge
contains ω. By construction of C, this means that ω ∈ C. Since this is true for any
ω ∈ Ctxtφ(x), we get that C ⊇ Ctxtφ(x).

Clausal Entailment on FIAs
The following lemma helps proving Proposition 4.3.2.

Lemma 4.4.2. Let φ be an FIA, and γ be a term over literals of the form “x ∈ I”,
with I an open or closed interval.

Algorithm 4.5, given as input φ and γ, has the following properties:

• it is linear in ∥φ∥ · ∥γ∥;
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Algorithm 4.5 Restriction of an FIA φ to a term γ.
1: for each node N in φ, from the sink to the root do
2: let x := Var(N)
3: if x ∈ Scope(γ) then
4: for each E ∈ Out(N) do
5: let S := Lbl(E)
6: for each literal ⟨x,A⟩ in γ do
7: S := S ∩A
8: if S = ∅ then
9: label E by ∅

10: else
11: label E by {0}
12: label N by ⊻

• it preserves focusingness;

• the IA it returns is equivalent to the restriction of φ to γ.
Proof. Each node of φ is handled once; for each node, each literal of γ is con-
sidered at most once. S always remains an interval (be it open or closed), so the
intersection of line 7 can be done in constant time. Overall, the procedure is there-
fore linear in ∥φ∥ · ∥γ∥.

The second point is trivial, since the procedure only replaces variable nodes
by ⊻-nodes: edges that were focusing in φ remain so after the application of this
procedure.

To prove the last point, we denote the returned automaton asψ, Vγ = Scope(γ),
Vφ = Scope(φ), and Vψ = Scope(ψ). The goal is to show that JψK ≡ JφK|γ , i.e.,
Vψ = Vφ \ Vγ and for all #—v ∈ Dom(Vψ),

JψK( #—v ) = ⊤ ⇐⇒ ∃ #—g ∈ Dom(Vγ), (JφK ∧ JγK)( #—v . #—g ) = ⊤.

It is obvious that Vψ = Vφ \ Vγ , since all nodes labeled with a variable in Vγ
are removed from φ. Now, let us consider a Vψ-assignment #—v .

First, we suppose there exists a #—g ∈ Dom(Vγ) such that (JφK∧ JγK)( #—v . #—g ) =
⊤. That means JφK( #—v . #—g ) = ⊤ and JγK( #—v . #—g ) = ⊤. Hence, there exists a path
p in φ compatible with #—v . #—g and all literals ⟨x,A⟩ in γ are such that #—g |x ∈ A.

Let us consider the path p′ in ψ corresponding to path p in φ. Since nodes
labeled with variables not in Vγ are left unchanged in ψ, #—v is compatible with p′.
The other nodes are replaced by ⊻-nodes in ψ. Let us consider an x-edge E on
path p, with x ∈ Vγ . Since all literals ⟨x,A⟩ in γ are such that #—g |x ∈ A, the set S
computed in the procedure cannot be empty. Hence the edge corresponding to E
in ψ is labeled {0}, and is thus trivially compatible with #—v . As it is the case for all
x-edges on p with x ∈ Vγ , we get that p′ is compatible with #—v , and therefore thatJψK( #—v ) = ⊤. This proves the first part of the last point.
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Now, let us suppose that JψK( #—v ) = ⊤. There exists a path inψ compatible with
#—v . We call this path p′, and denote the corresponding path in φ as p. Obviously, #—v
is compatible with p (nodes labeled with variables not in Vγ are not modified in φ).

If p contains no node labeled with a variable in Vγ , then any model #—g of γ triv-
ially satisfies the requirement (JφK∧ JγK)( #—v . #—g ) = ⊤. Otherwise, let us consider
an edge E on path p, labeled by some variable x ∈ Vγ . Since p′ is compatible with
#—v , it means that E has been replaced by a nonempty ⊻-edge in ψ, and thus that the
set S computed in the procedure was not empty. This implies that there exists a
value ω such that ω ∈ Lbl(E) and ω is a consistent value for x in γ. We can find
such a value for any variable in Vγ that is mentioned in p; that means we can easily
find a Vγ-assignment verifying (JφK ∧ JγK)( #—v . #—g ) = ⊤. This proves the second
part of the last point.

Proof of Proposition 4.3.2 [p. 108]. Let φ be an FIA. Let {x1, . . . , xk} ⊆ T .
Let {I1, . . . , Ik} ⊆ IR. We consider the clause γ =

∨
1⩽i⩽k

[
xi ∈ Ii

]
. It holds

that φ |= γ if and only if JφK ∧ ¬JγK is inconsistent. This is in turn equivalent to
checking whether JφK|¬JγK is inconsistent.

Since ¬JγK is equivalent to
∧

1⩽i⩽k
[
xi /∈ Ii

]
, restricting φ to the negation of γ

boils down to restricting it to a conjunction of (possibly open) intervals. Thanks to
Lemma 4.4.2, the application of which is not limited to terms on closed intervals, we
know we can obtain in polytime an FIA equivalent to JφK|¬JγK. Since FIA supports
CO [Prop. 4.2.7], we can also check in polytime whether this FIA is consistent or
not—and thus, whether or not φ entails clause γ.

Combining Automata
Lemma 4.4.3. Let L be a Boolean representation language; if L ⩽p OBDDSBB and L
satisfies CO, then L does not satisfy ∧BC unless P = NP.

Proof. The proof is adapted from Darwiche and Marquis [DM02]: assuming L ⩽p

OBDDSBB and L satisfies CO, if L satisfied ∧BC, we would have a polytime algorithm
to decide whether the conjunction of two OBDDs (the variable orderings being
possibly different in each OBDD) is consistent; yet, this problem is NP-complete,
as shown by Meinel and Theobald [MT98, Lemma 8.14]. Therefore L does not
support ∧BC unless P = NP.

Proof of Proposition 4.3.5 [p. 108]. Proposition 4.2.5 states that FBDDSBB ⊆ FIA.
Therefore OBDDSBB ⊆ FIA, and FIA ⩽p OBDDSBB [Prop. 1.2.15]. Since FIA satisfies
CO [Prop. 4.2.7], Lemma 4.4.3 implies that FIA does not satisfy ∧BC, and thus ∧C,
unless P = NP.

Meshes and Single Quantification
The key property about meshes is that they are easy to obtain.
Lemma 4.4.4 (Obtaining a mesh). It is possible to build in quasi-linear time a mesh
M = {M1, . . . ,Mn} of a variable in any IA.
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Proof. Let φ be an IA and x ∈ Scope(φ). We only have to recover the finite
bounds of all intervals associated with x, i.e., lower and upper bounds of all disjoint
intervals constituting Dom(x) and of all x-edge labels; this process is linear (simple
traversal of the graph). Let B = {b1, . . . , bk} be the obtained set of bounds, sorted
in ascending order (quasi-linear process). We consider the following set:

P =

{
[−∞, b1[, {b1}, ]b1, b2[, {b2}, . . . ,

]bi−1, bi[, {bi}, ]bi, bi+1[, . . . , {bk}, ]bk,+∞]

}
.

Set P is obviously a partition of R: all sets are pairwise disjoint and their union is
R. Now, M = { p ∈ P | p ⊆ Dom(x) } is a mesh of x in φ.

• We show that M is a partition of Dom(x). All elements of M are pairwise
disjoint and included in Dom(x); let us prove that Dom(x) is entirely covered
by M. Let ω ∈ Dom(x), and let p be the unique element of P that contains
ω. If p is a singleton, then obviously p ∈ M, since p ⊆ Dom(x). If p is
not a singleton, it is by construction an open interval containing no bound of
any interval constituting Dom(x); since it contains one value from Dom(x),
it must be included in one of the intervals constituting Dom(x), and thus
p ∈ M. Consequently, M covers the whole Dom(x) and is thus a partition.

• Let E be an edge in φ such that Var(E) = x, and i an integer such that
Mi ∩ Lbl(E) ̸= ∅. By construction of M, Mi is either a singleton, or
an interval opened on both sides. In the first case, it is straightforward that
Mi ⊆ Lbl(E). In the second case, it is impossible for Mi to contain any
bound of Lbl(E), by construction; thus Mi ⊆ Lbl(E).

All in all, M is a partition of Dom(x) such that for all i ∈ {1, . . . , n}, if Mi ∩
Lbl(E) ̸= ∅ holds, then Mi ⊆ Lbl(E). By definition, it is a mesh of x in φ.

Meshes have very interesting properties, that come from the following fact:
values in a mesh element are interchangeable with respect to conditioning.
Lemma 4.4.5 (Conditioning on a mesh element). Let φ be an IA, x ∈ Scope(φ),
and M be a mesh of x in φ. Let M be an element of the mesh. For any two values
m and m′ in M , it holds that JφK|x=m ≡ JφK|x=m′ .

Proof. Let Z = Scope(φ) \ {x}, and #—z a Z-assignment. We write #—m the assign-
ment of x to m and #—m′ the assignment of x to m′.

(⇒) Suppose that JφK| #—m( #—z ) = ⊤, then JφK( #—m . #—z ) = ⊤. Consequently,
there exists a path p in φ that is compatible with #—m and #—z . Since p is
compatible with #—m, any x-edge E along p verifies m ∈ Lbl(E). There-
fore M ∩ Lbl(E) ̸= ∅. By definition of a mesh, M ⊆ Lbl(E). Hence
m′ ∈ Lbl(E). As this holds for any E, p is also compatible with #—m′, and
consequently, JφK( #—m′ . #—z ) = ⊤. Finally, we get JφK| #—m′( #—z ) = ⊤.
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(⇐) Suppose that JφK| #—m( #—z ) = ⊥, then JφK( #—m . #—z ) = ⊥. Any path in φ that is
compatible with #—z is not compatible with #—m.

If there existed a path p compatible with #—z and #—m′, this would mean that
any x-edge E along p would verify m′ ∈ Lbl(E). Thus, we would get
M ∩ Lbl(E) ̸= ∅, and by definition of a mesh, M ⊆ Lbl(E). Hence, E,
and thus p, would be compatible with #—m, which is contradictory.

Therefore, no path in φ can be compatible with #—z and #—m′: JφK| #—m′( #—z ) = ⊥.

This proves that JφK|x=m ≡ JφK|x=m′ .

The following lemma is a direct consequence of this property.
Lemma 4.4.6 (Quantification with a mesh). Let φ be an IA, x ∈ Scope(φ), and
M = {M1, . . . ,Mn} be a mesh of x in φ.

Let ⟨m1, . . . ,mn⟩ be a sequence of values such that for any i ∈ {1, . . . , n},
mi ∈Mi. We show that

∃x.JφK ≡ n∨
i=1

JφK|x=mi
and ∀x.JφK ≡ n∧

i=1

JφK|x=mi
.

Proof. Thanks to Shannon’s decomposition [Prop. 1.4.12], we obtain ∃x.JφK ≡∨
ω∈Dom(x)JφK|x=ω and ∀x.JφK ≡ ∧

ω∈Dom(x)JφK|x=ω.
Since Dom(x) =

∪n
i=1Mi (by definition of a mesh), we can write

∃x.JφK ≡ n∨
i=1

∨
ω∈Mi

JφK|x=ω and ∀x.JφK ≡ n∧
i=1

∧
ω∈Mi

JφK|x=ω.

Now, thanks to Lemma 4.4.5, we know that for all i ∈ {1, . . . , n}, any ω ∈ Mi

verifies JφK|x=ω ≡ JφK|x=mi
. Hence∨

ω∈Mi

JφK|x=ω ≡
∧
ω∈Mi

JφK|x=ω ≡ JφK|x=mi

and we get the result.

We often use such sequences of values ⟨m1, . . . ,mn⟩ verifying mi ∈ Mi for any
i ∈ {1, . . . , n}. We call these values “indexes”, and use Indexes(x) to denote a
sequence of indexes for some mesh of x.
Proof of Proposition 4.3.8 [p. 109]. Let φ be an L-representation, and let x ∈
Scope(φ). Lemma 4.4.4 states that it is possible to build in time quasi-linear in
∥φ∥ a mesh M = {M1, . . . ,Mn} of x in φ. We can build an “index sequence”
Indexes(x) = ⟨m1, . . . ,mn⟩ from this mesh.

Now, thanks to Lemma 4.4.6, we know that ∃x.JφK ≡ ∨n
i=1JφK|x=mi

; to obtain
an L-representation of ∃x.JφK, it is sufficient to maken conditionings, and to disjoin
the results together. Thus, if L satisfies CD and ∨C, it satisfies SFO.
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Similarly, Lemma 4.4.6 states that ∀x.JφK ≡
∧n
i=1JφK|x=mi

. We can thus ob-
tain an L-representation of ∀x.JφK by making n conditionings and conjoining the
results together. Hence, if L satisfies CD and ∧C, it satisfies SEN.

Lemma 4.4.7. IA and FIA satisfy SFO. IA satisfies SEN.

Proof. We get these results by a direct application of Proposition 4.3.8, since IA
satisfies CD [Prop. 4.2.1], ∨C [Prop. 4.3.3], and ∧C [Prop. 4.3.4]; and FIA satisfies
CD [Prop. 4.2.6] and ∨C [Prop. 4.3.3].

4.4.4 Queries and Transformations

Remaining Queries
Lemma 4.4.8. IA and FIA satisfy MC.

Proof. Let φ be an IA and #—v ∈ Dom(Scope(φ)). Since IA satisfies the CD trans-
formation [Prop. 4.2.1], we can obtain in polytime an IA φ| #—v equivalent to the
restriction of φ by #—v . By definition of the restriction, Scope(φ| #—v ) = ∅; thanks
to Proposition 4.1.16, after having reduced φ| #—v , we obtain either the empty or the
sink-only automaton. Since MC is a query and FIA ⊆ IA, Propositions 1.2.15
and 1.2.18 show that FIA also supports MC.

Lemma 4.4.9. FIA does not satisfy VA, IM, EQ, SE, or CT, unless P = NP.

Proof. We apply Proposition 1.2.18: DNFSBB does not satisfy any of these queries
[Th. 1.4.18], and it is polynomially translatable into FIA [Prop. 4.3.9].

Lemma 4.4.10. FIA satisfies ME.

Proof. Letφ be a FIA. We check in polytime whetherφ is consistent [Prop. 4.2.7];
if it is not the case, the empty set is returned. Otherwise, we build a decision tree
representing a union of boxes, that is, a DNF, equivalent to Mod(φ). For each
variable xi ∈ Scope(φ) = {x1, . . . , xn}, let us build (in time quasi-linear in
∥φ∥ [Lemma 4.4.4]) a mesh Mi = {M i

1, . . . ,M
i
ni
} of xi in φ. We also build

an index sequence Indexes(xi) = {mi
1, . . . ,m

i
ni
} for each mesh, that is, for all

j ∈ [1, . . . , ni], mi
j ∈M i

j . We denote the assignment of xi to mi
j as #—mi

j .
Then, we create a tree T , initially containing only one node, labeled with the

empty assignment. We complete the tree thanks to the following process.
1: for i from 1 to |Scope(φ)| do
2: let F be the set of T ’s leaves
3: for each F in F do
4: let #—z be the {x1, . . . , xi−1}-assignment label of F
5: for j from 1 to ni do
6: if JφK| #—z . #—mi

j
is consistent then

7: add a child to F , labeled #—z . #—mi
j
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Once the tree is entirely built, all leaf labels are models of φ, and replacing each
assignment with its corresponding term (each value is a mesh index, so it can be
“replaced” by its corresponding mesh element), yields the entire model set of φ.

More precisely, for each leaf F in T , we consider its label #—z . It is a Scope(φ)-
assignment, consisting of mesh indexes. For each i from 1 to n, letmi

ji
be the value

assigned to xi in #—z . We know that if we modify #—z so that instead ofmi
ji

, we assign
xi to any value inM i

ij
, the result is still a model of φ—values in each mesh element

are interchangeable, thanks to Lemma 4.4.5. Any model of the term
∧n
i=1

[
xi ∈

M i
ji

]
is thus a model of φ. The disjunction ∆ of the terms associated with all leaf

labels in T is hence included in Mod(φ), and it is a DNFT -representation.
Since a mesh is a partition of the variable’s domain, we tested every possible

value for each variable, so every model of φ is also a model of at least one of the
terms. This proves that our DNF ∆ has the same model set as φ.

Let us now show that the process is polynomial. At the end of the algorithm,
all leaves of T are at the same level (i.e., all paths of T are of equal length); indeed,
for each node, at least one of the tests of line 6 must pass (as the current FIA is
consistent). It implies that at each incrementation of i, the number of leaves is
less than the number of leaves in the final tree, and thus obviously bounded by
∥∆∥. Moreover, all the ni are polynomial in ∥φ∥. Hence, the test of line 6 is
not done more than a number of times polynomial in ∥∆∥ · ∥φ∥ in the whole
algorithm. Now, this test can be made in time polynomial in ∥φ∥, as FIA supports
CO [Prop. 4.2.7] and CD [Prop. 4.2.6]. Hence, the global algorithm is polytime in
∥∆∥ and ∥φ∥ (as n ⩽ ∥φ∥).

Quantification and Restriction

Lemma 4.4.11. IA and FIA do not satisfy EN unless P = NP.

Proof. If these languages satisfied EN, they would also satisfy VA. Indeed, if they
satisfied EN, we could obtain in polytime, for any φ, an automaton ψ equivalent
to ∀V.JφK, with V = Scope(φ). By definition of the quantification [Def. 1.4.9],
Scope(ψ) = ∅; after reducing ψ, we thus obtain either the empty or the sink-only
automaton [Prop. 4.1.16]. It is hence easy to check whether ψ is consistent; and
thanks to Proposition 1.4.10, we know that φ is valid if and only if ψ is consistent.

We could thus check in polytime the validity of any automaton; yet none of
these languages satisfies VA unless P = NP [Lemmas 4.4.1 and 4.4.9].

Lemma 4.4.12. IA does not satisfy FO or TR unless P = NP.

Proof. If IA satisfied FO, it would also satisfy CO. Indeed, we could in this case
obtain in polytime, for any φ, an automaton ψ equivalent to ∃V.JφK, with V =
Scope(φ). By definition of the quantification [Def. 1.4.9], Scope(ψ) = ∅; after re-
ducingψ, we thus obtain either the empty or the sink-only automaton [Prop. 4.1.16].
Checking whether ψ is consistent is then easy; and thanks to Proposition 1.4.10, we
know that φ is consistent if and only if ψ is consistent.
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We could thus check in polytime the consistency of any IA; yet it is impossible
unless P = NP [Lemma 4.4.1]. Hence, IA does not satisfy FO unless P = NP.

Now, since forgetting a set of variables {x1, . . . , xk} is equivalent to restricting
to the valid term

[
x1 ∈ R

]
∧· · ·∧

[
xk ∈ R

]
, if IA satisfied TR, it would also satisfy

FO. Hence, IA does not satisfy TR unless P = NP.

Lemma 4.4.13. FIA does not satisfy SEN unless P = NP.

Proof. We show that if FIA satisfied SEN, it would satisfy ∧BC. Let φ1 and φ2

be two FIAs. Let Z = Scope(φ1) ∪ Scope(φ2). We consider a variable x /∈ Z of
domain {0, 1}. We build the automaton ψ by merging the sinks of φ1 and φ2, and
adding a root to ψ, labeled x, with one outgoing edge labeled {0} and pointing to
the root of φ1, and a second outgoing edge labeled {1} and pointing to the root of
φ2. Clearly enough, ψ is focusing, since φ1 and φ2 are, and x is mentioned in one
node only.

By construction, Jφ1K ≡ JψK|x=0 (that is, a model #—z of ψ is a model of Jφ1K
if and only if #—z |x = 0). Similarly, Jφ2K ≡ JψK|x=1 (that is, a model #—z of ψ is a
model of Jφ2K if and only if #—z |x = 1).

Shannon’s decomposition [Prop. 1.4.12] gives ∀x.JψK ≡
∧
ω∈Dom(x)Jψ|x=ωK.

Hence, ∀x.JψK ≡ JψK|x=0 ∧ JψK|x=1, that is to say, ∀x.JψK ≡ Jφ1K ∧ Jφ2K.
It is possible to buildψ in time linear in the sizes ofφ1 andφ2. Therefore, if FIA

supported SEN, we would have a polytime algorithm mapping two FIAs to an FIA
representing their conjunction. Yet it is impossible, since FIA does not satisfy ∧BC
unless P = NP [Prop. 4.3.5]. Hence FIA does not support SEN unless P = NP.

Lemma 4.4.14. FIA satisfies TR and FO.

Proof. It is obvious from Lemma 4.4.2 that FIA satisfies TR, thanks to Algo-
rithm 4.5. Now, since TR implies FO (forgetting variables {x1, . . . , xk} is equiva-
lent to restricting to the term

[
x1 ∈ R

]
∧ · · · ∧

[
xk ∈ R

]
), FIA satisfies FO.

Conjunction with a Term
Lemma 4.4.15. IA satisfies ∧tC.

Proof. The proof is straightforward from the fact that IA satisfies ∧C.

Lemma 4.4.16. FIA satisfies ∧tC.

Proof. Algorithm 4.6 is very similar to Algorithm 4.5, which computes the term
restriction of an FIA. The difference is that instead of replacing nodes by ⊻-nodes,
it replaces edge labels by the intersection S (line 7). It also adds nodes at the top of
the automaton—similar to what is done when conjoining two IAs.

For the same reasons as Algorithm 4.5 [see proof of Lemma 4.4.14, p. 123],
Algorithm 4.6 is linear. It also maintains focusingness, thanks to the fact that A ⊆
B =⇒ (A ∩ C) ⊆ (B ∩ C). All edge labels are intersected with the same
intervals, so if they were focusing before, they still are after the procedure. The
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Algorithm 4.6 Conjunction of an FIA φ and a term γ.
1: for each node N in φ, from the sink to the root do
2: let x := Var(N)
3: if x ∈ Scope(γ) then
4: for each E ∈ Out(N) do
5: let S := Lbl(E)
6: for each literal ⟨x,A⟩ in γ do
7: S := S ∩A
8: label E with S
9: for each variable x ∈ Scope(γ) do

10: let S := R

11: for each literal ⟨x,A⟩ in γ do
12: S := S ∩A
13: add to φ an x-node N with one outgoing edge to Root(φ), labeled S
14: let N be the new root of φ

added top nodes do not compromise focusingness either: by construction, all labels
are included in these top edge labels.

Now, we show that when applied to an FIA φ and a term γ, the FIA ψ that is
returned verifies JψK ≡ JφK∧JγK. The scope of ψ, which we denote as Vψ, is equal
to Scope(φ) ∪ Scope(γ), since ψ is basically γ on top of a modified version of φ.
Let us consider a Vψ-assignment #—v .

Suppose that JψK( #—v ) = ⊤. Then there exists a path p from the root to the
sink of ψ, that is compatible with #—v . Path p consists of a top part (from the root
of ψ to the node corresponding to the root of φ) and a bottom part (from the node
corresponding to the root of φ to the sink). Since the top part of p (which is the
same for all paths from the root to the sink of ψ) is compatible with #—v , this proves
that #—v |= γ, by construction. Let us consider the path p′ inφ that corresponds to the
bottom part of p. Edge labels in p′ are less restrictive than in p, so if p is compatible
with #—v , p′ also is. This proves that #—v |= φ. Hence (JφK ∧ JγK)( #—v ) = ⊤.

Now, suppose that (JφK ∧ JγK)( #—v ) = ⊤. #—v is compatible with all literals in γ,
and there exists a path p in φ that is compatible with #—v . Let us consider the path
p′ in ψ, that consists of the common top part of all paths in ψ, and of the bottom
path corresponding to p. We know that #—v is compatible with all literals in γ, so
it is compatible with the top part of p′. It is also compatible with the bottom part:
considering a variable x ∈ Scope(γ) and an x-edge E on path p, #—v |x ∈ S, since
it is in Lbl(E) and also in all x-literals of γ. Hence, p′ is compatible with #—v , and
consequently JψK( #—v ) = ⊤. All in all, Algorithm 4.6 is polytime and outputs an
FIA representing the conjunction of the given FIA and term: FIA supports ∧tC.

Final Proof
Proof of Theorem 4.3.14 [p. 110]. All results of this theorem come from proposi-
tion and lemmas. Tables 4.3 and 4.4 associate with each claim its proposition.
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Query IA FIA
CO ◦ [Lem. 4.4.1]

√
[Prop. 4.2.7]

VA ◦ [Lem. 4.4.1] ◦ [Lem. 4.4.9]

MC
√

[Lem. 4.4.8]
√

[Lem. 4.4.8]

CE ◦ [Lem. 4.4.1]
√

[Prop. 4.3.2]

IM ◦ [Lem. 4.4.1] ◦ [Lem. 4.4.9]

EQ ◦ [Lem. 4.4.1] ◦ [Lem. 4.4.9]

SE ◦ [Lem. 4.4.1] ◦ [Lem. 4.4.9]

MX ◦ [Lem. 4.4.1]
√

[Prop. 4.2.8]

CX ◦ [Lem. 4.4.1]
√

[Prop. 4.3.1]

CT ◦ [Lem. 4.4.1] ◦ [Lem. 4.4.9]

ME ◦ [Lem. 4.4.1]
√

[Lem. 4.4.10]

Table 4.3: Results about queries, and proposition corresponding to each result.√
means “satisfies”, and ◦ means “does not satisfy, unless P = NP”.

Transfo. IA FIA
CD

√
[Prop. 4.2.1]

√
[Prop. 4.2.6]

TR ◦ [Lem. 4.4.12]
√

[Lem. 4.4.14]

FO ◦ [Lem. 4.4.12]
√

[Lem. 4.4.14]

SFO
√

[Lem. 4.4.7]
√

[Lem. 4.4.7]

EN ◦ [Lem. 4.4.11] ◦ [Lem. 4.4.11]

SEN
√

[Lem. 4.4.7] ◦ [Lem. 4.4.13]

∨C
√

[Prop. 4.3.3]
√

[Prop. 4.3.3]

∨BC
√

[Prop. 4.3.3]
√

[Prop. 4.3.3]

∨clC
√

[Prop. 4.3.3]
√

[Prop. 4.3.3]

∧C
√

[Prop. 4.3.4] ◦ [Prop. 4.3.5]

∧BC
√

[Prop. 4.3.4] ◦ [Prop. 4.3.5]

∧tC
√

[Lem. 4.4.15]
√

[Lem. 4.4.16]

Table 4.4: Results about transformations, and proposition corresponding to each
result.

√
means “satisfies”, and ◦ means “does not satisfy, unless P = NP”.
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CHAPTER

5

Building Interval Automata

From a theoretical point of view, focusing interval automata make for efficient han-
dling of Boolean functions over continuous and enumerated variables. It is hence
possible to adapt existing “planning using compilation” approaches [§ 2.3], and in
particular those we decided to focus on [§ 3.1], to the use of such variables. An
embedded system can thus, for example, rely on a decision policy [§ 3.3.2.1] or a
transition table [§ 3.3.2.2] to make decisions, without requiring log2(n) Boolean
variables to represent each continuous variable the domain of which has been ar-
bitrarily discretized into n values. But how to obtain an FIA representing a given
decision policy or transition table? Before using them in practice, we have to ex-
amine the compilation step [§ 1.6.1].

To this end, we examine in this chapter different ways of building focusing
interval automata. We first discuss the input language, in which problems are ini-
tially represented, that of continuous constraint networks [§ 5.1]. Then, we detail
bottom-up compilation [§ 5.2] and compilation by solver tracing [§ 5.3].

5.1 Continuous Constraint Networks

As we pointed out in Section 1.6.1, a natural way of representing Boolean func-
tions is the constraint network: a model of a Boolean function is a solution to its
corresponding constraint network. When applied to a constraint network on real
variables, the constraint satisfaction problem is generally referred to as a continu-
ous CSP [SF96]. We use a similar terminology; however, we do not allow any real
variable, but only R-tileable ones.

Definition 5.1.1. A continuous constraint network (CCN) is a constraint network
Π = ⟨V,C ⟩ in which V ⊆ T .
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Transforming a continuous CN into an FIA is not a trivial task; in particular,
it is not tractable, since if it were, the constraint satisfaction problem would be
polynomial—and it is not [see e.g. RBW06]. Note that interval automata compila-
tion has an important difference with OBDD compilation. In a constraint network
on Boolean variables, each constraint is representable as an OBDD; this allows no-
tably a bottom-up compilation. This is not the case for IAs, because IA is not a
complete language [Proposition 4.1.6]. Simple CCN constraints such as x < 1 or
x = y cannot be represented exactly as IAs.

The solution we adopted is to use an interval-based constraint solver, that
is, a tool designed to provide an approximation of the solution set of a CCN by
recursively splitting variable domains in several parts. We used the interval solver
RealPaver [GB06]. Its output consists of a list of boxes, which makes it directly
compatible with interval automata.

RealPaver guarantees that no solution is lost, that is, every solution belongs to
at least one of the returned boxes. Under some hypotheses, it is also able to check
whether the solution set is exactly the union of the returned boxes: this is done by
distinguishing two types of boxes, the outer ones, which may contain non-solution
assignments, and the inner ones, which contain solutions only. We decide to ignore
this distinction, since interval automata can only represent one type of set.

To sum up, the incompleteness of the interval automata language forces us to
use approximations of the Boolean functions we want to compile. We rely on Re-
alPaver to compute this approximation, and only compile interval automata repre-
senting the unions of boxes returned by RealPaver.

5.2 Bottom-up Compilation

Bottom-up compilation is the most straightforward compilation method [§ 1.6.1.1].
We examine in this section how it is applicable to interval automata.

5.2.1 Union of Boxes
The interval-based solver RealPaver approximates the Boolean function that cor-
responds to a continuous constraint network, and returns a Boolean function that
is guaranteed to be representable as an IA. Indeed, it returns a list of boxes, and
we know that the functions representable as IAs are precisely those having a “fi-
nite union of boxes” model set. But this is not only interesting for expressivity
reasons: union of boxes are actually DNFIRT -representations, that are known to be
polynomially translatable into both IA and FIA [Proposition 4.3.9].

The first, simple method we used for the compilation of some continuous con-
straint network into FIA is to solve this CCN using RealPaver, then to translate the
output into FIA by computing the disjunction of all boxes. This method simply uses
RealPaver as a tool to approximate the function, and compile this approximation
into an FIA in a bottom-up fashion.
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Observe that it is possible to compile RealPaver’s output on the fly, that is, to
compile each box whenever it is provided and add it to the current compiled form.
The final compiled form is identical to that of the post-solving compilation, and the
time complexity is the same, but this variant avoids having to memorize the entire
output before starting compilation.

5.2.2 Combining Constraints
Since we can use this method on single-constraint networks, we can now examine
the possibility of compiling each constraint of some network, then combine the
elementary automata into a general one. This technique can be used to compile IAs;
however, since FIA does not satisfy ∧BC, we cannot combine even two constraints
without facing exponential losses in space. Considering that only FIA satisfies
enough queries to be helpful online, we discard this method.

5.3 RealPaver with a Trace

Instead of using RealPaver as a “black box”, by only compiling its output, we can
also adapt the “DPLL with a trace” approach, that we described in Section 1.6.1.2.
The idea is to build an IA corresponding exactly to the trace of a solving: each
variable choice yields a node, each domain splitting yields a set of edges. We start
off with a closer inspection of the search algorithm of RealPaver.

5.3.1 RealPaver’s Search Algorithm
Algorithm 5.1 is a simplified version of RealPaver’s generic branch-and-prune al-
gorithm. For the sake of simplicity, we present it as a recursive algorithm, even if
the actual implementation is iterative.

Roughly speaking, it works on the current box by first pruning it (removing
values that are proven not to be solutions), then splitting the box into several parts,
and calling itself for each of the computed sub-boxes. Of course, it does not con-
tinue indefinitely—it stops whenever the box is empty, is proven to contain only
solutions, or is small enough. The latter condition is controlled by a precision pa-
rameter.

More precisely, the procedure takes as input a continuous CN Π, of which we
denote the scope as {x1, . . . , xn} (variable domains can only be intervals—but this
is not a problem, see Section 5.3.5.3), a boxB = [a1, b1]×· · ·× [an, bn], with each
[ai, bi] being a closed interval included in Dom(xi), and a positive floating-point
real number ε to control precision.

The pruning step is done by the internal function Prune, that we do not detail;
it uses techniques from interval arithmetic, interval analysis, and constraint satis-
faction [see GB06 for details]. It is also able to indicate whether the pruned boxBP

is entirely included in the solution set; this information is used on line 4.
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Algorithm 5.1 RealPaver(Π, B, ε): returns a union U of boxes not larger than ε,
such that U is included in box B, and the solution set of the CCN Π is included in
U .

1: BP := Prune(Π, B)
2: if BP = ∅ then
3: return ∅
4: if BP is not included in the solution set of Π then
5: if BP is not more precise than ε then
6: y := Sel_var(Π, BP )
7: S := Split(Π, BP , y)
8: U := ∅
9: for each Bs ∈ S do

10: U := U ∪ RealPaver(Π, Bs, ε)
11: return U
12: return BP

On line 5, the precision of the pruned box BP is tested against the desired
precision. This simply consists in computing the length of each [ai, bi] in the pruned
box: BP is more precise than ε if and only if all these lengths are less than ε.

The splitting step is controlled by the internal functions Sel_var and Split.
Sel_var just chooses the next variable to split on—this depends on some heuristics,
but generally the variable with the largest “domain” in BP is chosen. Then Split
divides the box into a number of smaller boxes that cover the initial box (this is not
a partition: since boxes are cartesian products of closed intervals, boundaries are
overlapping). The number of sub-boxes can be 2 or 3; it depends on a parameter of
RealPaver, but cannot be changed during the search.

5.3.2 Tracing RealPaver

We adapt to RealPaver the principle described by Huang and Darwiche [HD05a],
designed to build Boolean compilation structures using the trace of a solver’s search
tree. Algorithm 5.2 is the “twin” of Algorithm 5.1, but instead of returning a union
of boxes, it returns an interval automaton. The instructions needed to achieve this
are indicated using frames, so that the original “RealPaver” parts and the modified
“compilation” parts be easily distinguishable. This procedure is a simplification of
our actual compiler, which is presented in Algorithm 5.3.

The compilation procedure is directly based on the search tree: every node of
the search tree (that is, every recursive call to RealPaver) corresponds to a node
in the resulting IA. Lines 2 and 14 correspond to leaves of the search tree: In the
first case, we know there is no solution in the current box—we return the empty
automaton. In the second case, the current box is not split anymore, either because
it contains only solutions, or because it is precise enough. We then return the sink-
only automaton.
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Algorithm 5.2 RP_to_IA(Π, B, ε): returns an interval automaton that represents a
superset of the set calculated by RealPaver(Π, B, ε).

1: BP := Prune(Π, B)
2: if BP = ∅ then
3: return the empty automaton

4: if BP is not included in the solution set of Π then
5: if BP is not more precise than ε then
6: y := Sel_var(Π, BP )
7: S := Split(Π, BP , y)

8: Ψ := ∅
9: for each Bs ∈ S do
10: let ψs := RP_to_IA(Π, Bs, ε)

11: Ψ := Ψ ∪
{
⟨Bs
|y, ψs⟩

}
12: let node N := Get_node(y,Ψ)
13: return the IA rooted at N
14: let ψ be the sink-only interval automaton
15: return ψ

The remainder of the procedure treats “internal” search nodes: the current box
is split, and the search continues for each of the computed sub-boxes. Splitting the
current box along a variable y boils down to creating an y-node, with n outgoing
edges corresponding to the n parts of the split; B|y is a closed interval obtained by
projecting box B on variable y.

Creation of internal IA nodes is delegated to a Get_node function, that takes
as input a variable x and a set of n couples “interval–IA”. It builds a node labeled
x with n outgoing edges, each one corresponding to one of the couples. That is to
say, to each couple ⟨I, φ⟩ corresponds an edge labeled I and pointing to the root of
φ. The advantage of using a Get_node function to do this work, is that it can be
implemented to make reduction operations on the fly. Thus, if one of the couples
⟨I, φ⟩ is such that I = ∅ or φ is the empty automaton, the corresponding edge
is not added. If there is no edge at all, no node is returned. It is also possible to
test whether the new node is undecisive, but not whether it is stammering (since
this property depends on parent nodes). However, and most importantly, it can
check whether it is isomorphic to another node that already exists, by using the
well-known technique of unique node table: each existing node is stored in a hash
table, at a key depending on its edges and children. If the node built by Get_node
has the same key as some node in the unique node table, Get_node discards the
newly created node and returns the stored node instead.

Note that IA nodes are not created when search nodes are opened. Indeed,
Get_node can only build “root” nodes—it does not create edges that point to noth-
ing. It only creates an IA node when the search subtree rooted at the current search
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node has been entirely explored. Hence, if the current box contains no solution, no
IA node is created; the procedure simply returns the empty IA, without having to
remove any node.

Consequently, the current IA is never bigger than the final one. The unique
node table only needs one entry per node in the final IA; all in all, the amount of
space needed by the algorithm is polynomial in the size of the output IA. However,
note that this resulting IA is not reduced, since stammering nodes cannot be treated
until the IA is complete.

The algorithm we presented is so far a direct adaptation of the “DPLL with a
trace” procedure of Huang and Darwiche [HD05a]. In particular, we ignored Re-
alPaver’s pruning step, since there is no such step in the Boolean case. Indeed,
whenever a value is removed from a Boolean variable’s domain, this variable is
never selected again, since there is no choice left. On the contrary, in RealPaver,
a domain can be reduced several times during the search. For that reason, the in-
terval automata returned by RP_to_IA do not represent the exact union of boxes
returned by RealPaver, but only a superset of this union. For example, for the
continous CN Π with a unique variable x of domain R and a unique constraint
x = 0, the RealPaver procedure only prunes the box from R to {0}, finds out
that this pruned box is included in the solution set of Π, and returns it. On the same
input, RP_to_IA returns the sink-only automaton—of which any {x}-assignment
is a model. To return an IA equivalent to RealPaver’s output, our compiler must be
adapted to take the pruning step of RealPaver into account.

5.3.3 Taking Pruning into Account
It is not possible to keep a perfect matching between RealPaver’s search tree and
our resulting interval automaton. Indeed, the pruning step removes values from
the current box, and this must appear in the IA. A first idea is to modify the IA
returned for each box (on lines 13 and 15 of Algorithm 5.2 [p. 131]), by adding
nodes explicitly restricting the domain of each variable to non-pruned values. It
multiplies the number of nodes by the size of the scope (since we add one node per
variable and per IA node).

Obviously, adding one node per variable is useless; an explicit restriction of the
current domain of a variable x is needed only if the domain of x has changed during
the pruning step. A second idea is therefore to add nodes explicitly restricting the
domain of a variable if and only if this domain has been modified by the pruning
step. This is better, but there are still lots of useless nodes: consider a path in
the search tree in which the domain of a variable y has been modified k times by
the Prune function. The corresponding path in the resulting IA thus contains k
“pruning y-nodes”, each being included in the previous one. Since each of these
nodes have only one outgoing edge, removing all of these nodes except for the last
one would leave the model set of the path unchanged.

Therefore, it seems much better to add “pruning nodes” at the end of the search
tree only. In order to do that, we need to remember the variables the domain of
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which has been modified at least once by the Prune function: let us call L the set
of such variables. When a search leaf is encountered, instead of returning the sink,
the procedure returns an interval automaton representing the term

∧
x∈L

[
x ∈ BP

|x
]
,

where BP denotes the current pruned box. It is then guaranteed that any domain
pruning is reflected in the resulting interval automaton, without increasing too much
the number of nodes to be added.

The last improvement is made by remarking that since the Split function re-
turns sub-boxes included in the current pruned box, it already reflects the fact that
the domain of the variable being split along has been modified. Denoting this vari-
able y, this means that a pruning y-node is added only if y’s domain has been pruned
after the last split along y.

Algorithm 5.3 IA_builder(Π, B, ε, L): returns an interval automaton that repre-
sents the set calculated by RealPaver(Π, B, ε). L is the set of variables that must
be “restricted” at the end.

1: BP := Prune(Π, B)

2: add to L all variables y such that BP
|y ̸= B|y

3: if BP = ∅ then
4: return the empty automaton
5: if BP is not included in the solution set of Π then
6: if BP is not more precise than ε then
7: y := Sel_var(Π, BP )

8: L := L \ {y}
9: S := Split(Π, BP , y)

10: Ψ := ∅
11: for each Bs ∈ S do
12: let ψs := IA_builder(Π, Bs, ε, L)

13: Ψ := Ψ ∪
{
⟨Bs
|y, ψs⟩

}
14: let node N := Get_node(y,Ψ)
15: return the IA rooted at N
16: let ψ be the sink-only interval automaton
17: for each y ∈ L do
18: let node N := Get_node

(
y,
{
⟨BP
|y , ψ⟩

})
19: let ψ be the IA rooted at N

20: return ψ

The final procedure, that we call IA_builder, is formally described in Algo-
rithm 5.3. Once again, the elements that are new in comparison to Algorithm 5.2
are indicated by frames. On line 2, the list L of variables needing a final pruning
node is updated; the variable along which the current box is split is removed from
L on line 8. At each search leaf, pruning nodes are added on top of the sink thanks
to the loop on line 17.
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Figure 5.1: This figure illustrates Algorithm 5.3. The figure on the left is a graphical
representation of problem Π defined in the text: the solution set is the non-hatched
area. The IA on the right is the result of IA_builder.

5.3.4 Example
Let us illustrate Algorithm 5.3 on an example. Let Π be the CCN having two vari-
ables, x and y, with Dom(x) = [0, 1] and Dom(y) = [0, 2], and the following set
of constraints: 

y ⩾ 2
√

max(0, 0.25− x2),

y ⩽ 2− 2
√

max(0, 0.25− x2),

y ⩾ 2
√

max(0, 0.25− (x− 1)2),

y ⩽ 2− 2
√

max(0, 0.25− (x− 1)2).

A graphical view of the solution set of Π is proposed in Fig. 5.1. The union of
boxes returned by RealPaver for this problem (with ε = 1) is

[0.5, 0.5669]× [1.5, 2] ∪ [0.5, 1]× [1, 1.5] ∪
[0.4330, 0.5]× [1.5, 2] ∪ [0, 0.5]× [1, 1.5] ∪

[0.5, 1]× [0.5, 1] ∪ [0.5, 0.5669]× [0, 0.5] ∪
[0, 0.5]× [0.5, 1] ∪ [0.4330, 0.5]× [0, 0.5].

Figure 5.1 shows the corresponding IA obtained with Algorithm 5.3.

5.3.5 Properties of Compiled IAs
Structure

The interval automata obtained thanks to procedure IA_builder have the quite
interesting property of being focusing. Indeed, all operations of RealPaver that
lead to a node in the resulting automaton, namely pruning and splitting, are always
restricting the current box. Thus, when calling Get_node, it is guaranteed that for
each couple ⟨I, φ⟩, the label of each x-edge in φ is a subset of I . IA_builder is
hence an FIA compiler, which was a requirement for it to be used for our application.

134



5.3 RealPaver with a Trace

.. x′.

x′

.

x′

.. [5, 10].

[0, 5]

. [8, 10].

[0, 1]

Figure 5.2: The FIA resulting from IA_builder, when given the continuous CN
on variable x′ ∈ [0, 10] with a single constraint x′ /∈ ]1, 8[.

Consistency
Note that if we obtain the empty automaton, it means that the problem is inconsis-
tent: indeed, since the resulting IA represents exactly RealPaver’s output, an empty
automaton means that RealPaver proved that the initial box contains no solution.

However, obtaining a consistent IA does not imply that the problem is consis-
tent: RealPaver is guaranteed to be complete, but not to be sound—it can return
boxes even if the problem is inconsistent. The only thing that can be deduced from
the fact that the compiled IA is consistent is simply that RealPaver has not proven
the problem to be inconsistent. Let us recall that due to the incompleteness of IA,
our compiler can only build an approximation of the actual Boolean function.

Discrete Variables
Variables in the IA framework have R-tileable domains, meaning that they can be
discrete. An IA can thus represent Boolean functions depending on both continuous
and discrete variables. However, RealPaver only takes as input real variables of
interval domain.1 To represent a variable x of domain [0, 1]∪ [8, 10] for example, it
is necessary to declare a variable x′ of domain [0, 10], and add a constraint stating
that x /∈ ]1, 8[.

Let us illustrate what happens for a trivial CCN using such a variable, viz., the
CCN of scope {x} with no constraint at all. RealPaver is forced to split the domain
(provided that the given precision is lower than 10): it makes two boxes, say [0, 5]
and [5, 10], then prunes each one to get [0, 1] and [8, 10]. The resulting FIA is shown
in Fig. 5.2: it contains 4 edges (2 if we remove stammering nodes), whereas it is
possible to represent this function using the sink-only automaton. It is possible to
improve IA_builder by considering the actual domains of the variables, and not
rely on what was given as input to RealPaver. Indeed, replacing x′ by x in the FIA
leads to it being reduced to the sink-only automaton (by removal of stammering
nodes, then contiguous edges, then undecisive node).

***

We implemented the two compilation techniques we described in this chapter
(union of boxes and “RealPaver with a trace”). The next chapter provides experi-
mental results about the compilation of FIAs using these methods, as well as about
their operational efficiency.

1It actually also accepts integer variables of integer interval domain. However, it is only “syntactic
sugar”—they are processed in a way that makes them behave exactly as we describe in this section.
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CHAPTER

6

Experiments on
Interval Automata

We have seen in Chapter 4 that interval automata, and in particular focusing interval
automata, are theoretically suitable for compilation-based planning applications. In
Chapter 5, we presented methods to compile continuous constraint networks into
focusing interval automata. This chapter finally outlines our experimental work.
First, we present our implementation of interval automata, of IA operations, and
of a compiler [§ 6.1]. Then, experimental compilation results are provided [§ 6.2].
Finally, we give results about the experimental use of compiled forms [§ 6.3].

6.1 Implementation

6.1.1 Experimental Framework

We implemented a library for handling interval automata, written in Java. In the
same way as classical packages for BDDs, such as CUDD [Som05], our program
allows interval automata to be built in a bottom-up fashion. That is to say, nodes
are incrementally added, from the sink to the root, using a Get_node function, as
described in Section 5.3.2. Almost all reduction operations are thus made on the
fly; in particular, the merging of isomorphic nodes relies on a unique node table.

6.1.2 Interval Automaton Compiler

Our library allows interval automata to be built “by hand”, using the Get_node
function; but since this approach is quite limited, we implemented two approaches
to the compilation of continuous constraint networks into interval automata. As we
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explained in the previous chapter, these two approaches make use of the RealPaver
constraint solver.

The first approach is the compilation of RealPaver’s output: we wrote a pro-
gram that parses this output and builds an equivalent FIA. In practice, the two steps
(solving and compilation) are separated, but nothing prevents them from being in-
terlaced.

The second approach is “RealPaver with a trace”: we implemented a prototype
of this compiler, modifying RealPaver so that it outputs its search trace in a file,
and using this file to guide compilation. Even if it requires the whole search trace
to be memorized before compiling, our prototype gives insight about the feasibility
of this approach, and the properties of compiled IAs.

6.1.3 Operations on Interval Automata
We implemented a number of operations on IAs and FIAs, restricting ourselves to
polytime operations. Available queries include consistency (CO) on FIA, model
checking (MC), model extraction (MX) on FIA, and context extraction (CX) on FIA.
Available transformations include conditioning (CD), forgetting (FO) on FIA, dis-
junction (∨C), conjunction (∧C) on IA, and conjunction with a term (∧tC).

However, as we will see in Section 6.3, these standard operations are too gen-
eral to be efficient in practice. In particular, transformations are often space- and
time-consuming. For that reason, we also implemented special operations, specifi-
cally designed for our planning applications. The main ones are CDCO, CDMX, and
CDFOMX. Let us outline when they are useful and how they work.

For the Satellite benchmark, we need to condition the compiled form with re-
spect to the current situation, then check whether the resulting FIA is consistent.
We remarked that this task can be seen as a single query, instead of the combina-
tion of CD and CO. This “special” query, that we named CDCO, aims at answering
the question “is this function consistent after having been conditioned by this as-
signment?”. The advantage of using this special query is that it can be done with
a simple traversal of the graph. The idea is to maintain a set of nodes that are
“reachable from the root”. Initially, this set contains only the root; we add all of its
children that are accessible modulo the conditioning assignment; then we add all
the children of these nodes, etc. Whenever the sink is added to this set, we know
that there exists a model of the function that is consistent with the conditioning
assignment—and hence the answer to the query is yes.

The second special query is CDMX: its goal is to extract a model from a condi-
tioned FIA, without explicitly computing this conditioning. It is notably useful to
handle decision policies (conditioning on the current state, and extraction of a deci-
sion) as well as transition relations (for example, conditioning on the current state
and chosen decision, and extraction of a possible next state). It works in a similar
way as CDCO: roughly speaking, we maintain a set of nodes that are reachable from
the root, together with the incoming edge by means of which they were reached.
Whenever the sink is reached, we can retrieve a consistent path in reverse order.
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problem time #nodes #edges charac. filesize
(ms) size (octets)

Drone4-5-3 14 082 46 871 51 701 51 727 2 161 248
Drone4-10-3 20 317 97 722 104 576 104 602 4 237 494
Drone4-15-3 164 028 221 124 238 042 238 068 10 495 673
Drone4-20-3 146 504 223 984 245 078 245 104 10 868 910
Drone4-25-3 172 525 288 776 309 870 309 896 12 940 209
Satellite 25 391 141 096 145 016 145 059 8 476 904

Table 6.1: Results obtained when compiling RealPaver’s output into FIA.

The last special query is a modified version of CDMX. It aims at extracting a
model from an FIA in which some variables are conditioned and some other vari-
ables are forgotten. We call it CDFOMX: it can be achieved by applying CD, then
FO, then MX —or by applying the specific traversal we described in the previous
paragraph, with a few modifications to handle variables that have to be forgotten.

6.2 Compilation Tests

We compiled, on a standard laptop,1 various instances of our benchmarks involving
real-valued variables, namelyDrone and Satellite [see Chapter 3], using the two ap-
proaches we described in the previous chapter. For each problem instance, we give
the time necessary to compile the FIA (excluding the running time of RealPaver),
the number of nodes and edges of the FIA, its characteristic size, and the size in
octets of a file in which the FIA has been written. This filesize is meant to give a
rough idea of the relative memory space taken by the instances; it is not an accurate
measurement of the RAM size they take while handled.

Table 6.1 presents results obtained when compiling the output of RealPaver,
while Table 6.2 presents results obtained using “RealPaver with a trace”. There are
five instances of theDrone benchmark, each one with four zones and three available
marbles, the varying parameter being the allotted time.

Observe that compiled FIAs are relatively large, up to approximately 300 000
nodes and edges. Using graphs of such size in an autonomous system require a
fair amount of memory; this is however not prohibitive for applications in which
memory size is not crucial. On an opposite note, compilation is actually fast. Note
that for Drone instances, it is faster to compile using “RealPaver with a trace”, but
this yields larger results. The longer time taken by the bottom-up approach comes
from the fact that the hash key we use for the unique node table is not well adapted
to nodes with lots of children, which is the case of the root node (the compiled form
is a disjunction of hundreds of smaller FIAs).

1Mobile Turion 64 X2 TL-56, 1.80 GHz, 2 Go RAM.
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problem time #nodes #edges charac. filesize
(ms) size (octets)

Drone4-5-3 17 924 56 766 61 596 61 611 2 784 515
Drone4-10-3 21 723 74 436 81 290 81 299 3 718 465
Drone4-15-3 58 013 252 995 269 913 269 961 11 985 073
Drone4-20-3 92 206 329 724 350 818 350 836 15 595 018
Drone4-25-3 64 754 333 390 354 772 354 798 15 760 686
Satellite 24 899 109 078 112 022 112 045 6 546 529

Table 6.2: Results obtained with “RealPaver with a trace”.

problem CD FO MX CD MX CDFOMX CDMX
#—s S′ ↪→ #—a #—a ↪→ #—s ′ ⟨ #—s ,S′⟩↪→ #—a #—a ↪→ #—s ′

Drone4-5-3 1074 6 0 2 0 0 1
Drone4-10-3 3145 18 0 3 0 0 0
Drone4-15-3 12 414 9 0 3 2 1 1
Drone4-20-3 14 936 4 1 5 0 1 1
Drone4-25-3 16 216 5 0 6 0 3 3

Table 6.3: Results for Scenario 1 on several instances of the Drone transition rela-
tion, obtained using “RealPaver with a trace”. All times are in milliseconds.

6.3 Application Tests

After having examined the compiled forms regarding the memory space they take,
we study their efficiency in terms of operation duration. In this section, we give
results regarding simulations of the use of compiled forms. That is, we consider
a number of possible ways for the FIA to be handled online, depending on the
problem it represents; we call scenario a possible use of the compiled form. Each
scenario is divided into steps, each one corresponding to a query or a transforma-
tion. We provide results about the execution of these scenarios on the FIAs we
compiled using “RealPaver with a trace”.

6.3.1 Simulating Online Use of theDrone Transition Relation

Instances of the Drone benchmark are compiled transition relations, that is, rela-
tions linking a current state and an action to the corresponding next state: denoting
S the set of state variables, A the set of action variables, and S ′ the set of next state
variables, the compiled form is a Boolean function over S ∪ A ∪ S ′. We identify
four scenarios that can be used on such structures. They are similar, in the sense
that they are all based on CD, FO, and MX, but variables and operation order differ,
which notably has an impact on the size of the compiled form the operations are
applied on.
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In Scenario 1, we observe a current state. We want to choose a possible decision,
and then get a possible next state. This corresponds to the following operations:

• CD on the whole FIA, w.r.t. some S-assignment #—s ;

• FO on the conditioned FIA, w.r.t. variables from S ′;

• MX on the resulting FIA, to get an action #—a ;

• CD on the conditioned FIA, w.r.t. #—a ;

• MX on the resulting FIA, to get a next state #—s ′.

Using the special queries we described in Section 6.1.3, it boils down to

• CDFOMX on the whole FIA, to get an action #—a ;

• CDMX on the whole FIA, to get a next state #—s ′.

We ran 20 simulations of Scenario 1, picking the initial current state at random
among the possible states. Table 6.3 provides the average duration of each oper-
ation, in milliseconds. Without the special queries, this scenario suffers from the
bottleneck of conditioning. This is because a lot of nodes are modified, and a mod-
ification of a node recursively impacts all its ancestors, because of the unique node
table system. Once the first conditioning is over, the automaton is much smaller;
the forgetting operation and the second conditioning are thus executed in a more
reasonable time. Unsurprisingly, the model extraction query, which is roughly done
through a direct descent in the graph, is done really fast—in less than one millisec-
ond for all instances.

Using only standard queries and transformations, the whole scenario needs 17 s
on average to be executed on the largest instance. It can be considered acceptable
for some applications, depending for example on the time necessary to execute each
action. But if the MAV must make decisions very quickly, for example if the zones
are very close to each other, handling this transition table online to compute the
next decision to make is not possible. However, using the specific queries CDMX
and CDFOMX, the whole scenario can be done in 6 ms on average for the largest
instance, which is much more reasonable.

In Scenario 2, we also observe a current state, but we want to find out a possible
next state. This corresponds to the following operations:

• CD on the whole FIA, w.r.t. some S-assignment #—s ;

• FO on the conditioned FIA, w.r.t. variables from A;

• MX on the resulting FIA, to get a next state #—s ′.

It boils down to a single execution of CDFOMX. Results are presented in Table 6.4;
the first column contains the same results as in Table 6.3, and the associated op-
eration (conditioning of the whole transition relation) is once again the bottleneck
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problem CD FO MX CDFOMX
#—s A ↪→ #—s ′ ⟨ #—s ,A⟩↪→ #—s ′

Drone4-5-3 1074 14 0 0
Drone4-10-3 3145 40 2 0
Drone4-15-3 12 414 18 2 1
Drone4-20-3 14 936 7 0 1
Drone4-25-3 16 216 8 1 5

Table 6.4: Results for Scenario 2 on several instances of the Drone transition rela-
tion, obtained using “RealPaver with a trace”. All times are in milliseconds.

problem
CD FO MX CDFOMX CD MX CDMX

#—s ′ A ↪→ #—s
⟨ #—s ′,A⟩

#—s ′ ↪→ #—s . #—a
#—s ′

↪→ #—s ↪→ #—s . #—a

Drone4-5-3 1001 44 8 6 1001 9 8
Drone4-10-3 2778 29 4 15 2778 5 16
Drone4-15-3 11 590 1205 203 11 11 590 250 14
Drone4-20-3 18 700 1801 296 13 18 700 364 12
Drone4-25-3 19 865 1982 373 18 19 865 378 19

Table 6.5: Results for Scenarios 3 and 4 on several instances of the Drone transition
relation, obtained using “RealPaver with a trace”. All times are in milliseconds.

of the scenario. Forgetting action variables instead of next state variables does not
seem to make a difference: this bears witness to the fact that RealPaver does not
follow a specific variable ordering.

Scenarios 3 and 4 take a reverse approach, actually going backwards in the
state-transition system. The purpose is to find a state (or a state-action pair, respec-
tively) that can lead to the current state. Finding such a state can be done using the
following operations:

• CD on the whole FIA, w.r.t. some S ′-assignment #—s ′;

• FO on the conditioned FIA, w.r.t. variables from A;

• MX on the resulting FIA, to get a state #—s .

This corresponds to a single application of our specific query CDFOMX. To find a
state-action pair, we do not need to forget action variables; the following operations
are sufficient:

• CD on the whole FIA, w.r.t. some S ′-assignment #—s ′;

• MX on the resulting FIA, to get a state-action pair #—s . #—a .

This corresponds to a single execution of CDMX. Results for Scenarios 3 and 4 can
be found in Table 6.5. They confirm our observations so far, aside from the fact
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that operations following the first conditioning take more time than for the forward
scenarios.

All in all, these results show that it seems possible for transition relations com-
piled as FIAs to be handled online, as long as one does not rely too much on stan-
dard, generic operations.

6.3.2 Simulating Online Use of the Satellite Subproblem

The Satellite benchmark represents a subproblem of a larger decision-making prob-
lem. To use it, we just have to condition the compiled form with respect to the cur-
rent state (that is, the current attitude of the satellite), and check whether the result
is consistent. If it is the case, it means that executing the sun-pointing maneuver is
possible in the allotted time. We applied only this scenario to the Satellite bench-
mark; the operations are CD and CO, which boil down to a simple specific CDCO
operation. On 20 randomly chosen states, the conditioning step took 13 173 ms and
the consistency step less than 1 ms on average. This is too long for this application,
in which time is a crucial parameter. However, the specific CDCO query also took
less than 1 ms on average. Consequently, supposing that the embedded memory of
the satellite is able to contain a compiled form of this size, it is likely that handling
this compiled form online would be possible.
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Set-labeled Diagrams

145





Back to Enumerated Variables

Remarks about Meshes and Discretization
Like GRDAG, the language of interval automata is not complete [Proposition 4.1.6];
that is to say, there exists Boolean functions on R-tileable variables that cannot be
represented as IAs. Indeed, each path in an IA represents a term

[
x1 ∈ I1

]
∧ · · · ∧[

xn ∈ In
]
, the model set of which is simply a box I1× · · ·× In. Interval automata

can thus only represent “unions of boxes”, as presented in Figure 6.1.
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Figure 6.1: A model set representable as an IA (left) and another one, not repre-
sentable as an IA (right).

The simple function
[
x = y

]
, for example, of which several representations

are showed in Fig. 6.2, cannot be represented exactly using an IA: since IAs are
finite, they cannot reach the precision needed. Figure 6.2 illustrates this: when two
values in the domain of a variable are “too close” to each other, they cannot be
distinguished by the IA.

It is possible to “quantify” the precision of a given IA. By looking at the grids
pictured on each model set in Figure 6.2, it is obvious that the rightmost IA is much
more precise than the leftmost one. This grid actually corresponds to what we
earlier called meshes [Definition 4.3.7], that is, partitions of each variable’s domain
such that two values from a same bit are interchangeable. For a given interval
automaton, this grid (and more generally, any mesh) constitutes a discretization of
the domains.

Thus, replacing each continuous variable by a discrete one—associating with
each part of the mesh a certain “meta-value”—and modifying edge labels accord-
ingly, we obtain a discrete IA, that represents a discretization of the original inter-
pretation. The interest of this discretization lies in the fact that it was not arbitrarily
decided before the construction of the automaton, but is rather created a posteri-
ori, based on the interval automaton. In particular, since the size of mesh elements
can vary, the discretization is likely to be more adapted to the model set than an
arbitrary, regular discretization.

147



Introduction to Part III

.....
0
.

6
.

12
.0 .

6

.

12

.

x

.

y

.....
0
.

4
.

8
.

12
.0 .

4

.

8

.

12

.

x

.

y

.....
0
.

6
.

12
.0 .

6

.

12

.

x

.

y

..

y

.

x

.

y

..

[0
,6
]

.

[6
,1
2]

.

[0
,6
]

.

[6
,1
2
]

..

y

.

x

.

y

.

y

..

[8
,1
2
]

.

[4
,8
]

.

[0
,4
]

.

[8
,1
2]

.

[4
,8
]

.

[0
,4
]

...

y

.

x

.

y

.

y

.

y

.

[9
,1
2]

.

[6
,9
]

.

[3
,6
]

.

[0
,3
]

.

[9
,1
2
]

.

[6
,9
]

.

[3
,6
]

.

[0
,3
]

Figure 6.2: Three IAs representing Boolean function
[
x = y

]
with increasing pre-

cision.

This is illustrated in Figure 6.3: the arbitrary discretization in the left figure
leads to larger enumerated domains, while not being exact. On the contrary, the dis-
cretization in the right figure leads to enumerated domains of minimal size, without
any approximation. This comes from the fact that it has been computed after the
construction of the IA.

Discrete Interval Automata
In theory, from a “knowledge compilation map” point of view, using the original
interval automaton or its discretized version is not different: their characteristic
sizes are similar. In practice, however, this is not the case; real numbers take more
memory space than integers. Since we aim at embarking compiled forms, being
thereof constrained in memory space, discrete IAs seem better adapted. Of course,
they would be embarked along with a “translation table”, associating discrete meta-
values with continuous mesh elements, to encode and decode the inputs and outputs
of operations.

In this third part of the thesis, we study a Boolean representation language
that is the discrete counterpart of interval automata, in the sense that the mesh-
based discretization of any IA belongs to this new language. Since there is no con-
straint on the meta-values of the discretized variables, we choose to use the simplest
alternative—variables with an integer interval domain. We also extend the expres-
sivity of edge labels: they can now be any Z-tileable set. This does not change the
characteristic size of representations, but we show that it increases the generality
of the focusingness property.
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Figure 6.3: Some model set with two different discretizations, represented as grids.
On the left, an arbitrary discretization, approximate and spatially costly. On the
right, a discretization obtained a posteriori on an IA compiled using “RealPaver
with a trace”.

To emphasize the similarity of these new structures with the BDD family, we call
them set-labeled diagrams. The present part deals with the study of this language
and its sublanguages, and follows the same outline as Part II: we first formally de-
fine the languages and provide their knowledge compilation map [Chapter 7], then
examine compilation techniques [Chapter 8] and present results about the experi-
mental use of set-labeled diagrams for controlling autonomous systems [Chapter 9].

149



Introduction to Part III

150



CHAPTER

7

Set-labeled Diagrams Framework

In this chapter, we define the language of set-labeled diagrams, which are decision
diagrams on enumerated variables. We show how this language relates to interval
automata and to the decision diagram family. We identify sublanguages having
interesting properties—in particular, satisfying queries and transformations com-
monly used in a planning context.

The outline of the chapter is the following: we start with definitions about set-
label diagrams [§ 7.1], then introduce various sublanguages and discuss their re-
lations to state-of-the-art languages [§ 7.2]. The section that follows is devoted to
the relationship between the interval automaton and set-labeled diagram families
[§ 7.3]. Last, we draw up the knowledge compilation map of set-labeled diagrams
[§ 7.4].

7.1 Language

7.1.1 Definition

Let us start with the formal definition of the variables we use in this part of the
thesis, namely integer variables.
Definition 7.1.1 (Integer variables). A variable x ∈ V is an integer variable if and
only if its domain is an integer interval,viz., Dom(x) ∈ IZ.

We only consider integer variables with contiguous values, for the sake of sim-
plicity; but any enumerated variable can be represented as an integer variable of
this kind. Note that the domain of an integer variable needs not be finite—Z, as a
whole, is a closed interval of Z. Elements of IZ are sets of the form {4, . . . , 9}. To
emphasize the fact that they are intervals, we use the following notation: [a, . . . , b]
for {a, . . . , b}, and [a, . . . ,∞] for N \ {0, . . . , a − 1}. The dots between bounds
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Figure 7.1: An example of a non-reduced SD. Variable domains are all [0, . . . , 10].
The two nodes marked (1) are isomorphic; node (2) is stammering; node (3) is un-
decisive; edges marked (4) are contiguous; edge (5) is dead.

distinguishes between real-valued and integer-valued intervals. We use I to denote
the set of integer variables.

Let us now define the language of set-labeled diagrams, SD. We give the formal
definition first, and detail each part afterwards.

Definition 7.1.2. The SD language is the restriction of NNFTZI to representations sat-
isfying ∧-simple decision [Def. 1.3.23].

SetTZ contains allZ-tileable sets [Definition 4.1.2], and ∧-simple decision [Defi-
nition 1.3.23] means that we allow pure disjunctive nodes but not pure conjunctive
nodes, just like interval automata. In other words, SD-representations are GRDAGs
on integer variables, with literals of the form “x belongs to a union of intervals”,
and with a “decision diagram”-like structure. This definition is quite close to that of
IA: variables and literal expressivity change, but the general structure is the same.
For this reason, we will handle set-labeled diagrams (SDs) in the same “automaton
form” that we used for IAs [§ 4.1.2], the only differences being variables and edge
labels. Figure 7.1 gives an example of SD.

We use the notation introduced in the context of IAs [§ 4.1.2]: Var(N) denotes
the label of a nodeN , etc. The only difference is that here, Lbl(E) ∈ TZ, whereas
for interval automata Lbl(E) ∈ IR. The interest of using tileable sets rather than
intervals on labels is that it groups more values: this impacts neither expressivity
nor characteristic size, but is useful for focusingness. Indeed, intuitively, the more
values an x-edge label contains, the more likely it is that it includes all subsequent
x-edge labels. We give an example of this later (Fig. 7.4).
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Figure 7.2: Illustration of the new definition of stammeringness. Fusing the two x-
nodes in the top SD yields the bottom SD, that has a greater characteristic size. As a
consequence, the middle x-node in the top SD cannot be considered as stammering.

7.1.2 Reduction

It is possible to reduce SDs using the same mechanisms as for IAs. Isomorphic
nodes, dead edges, and undecisive nodes can be defined in the exact same way.
Definition 7.1.3. Let φ be an SD.

• Two nodesN1 andN2 of φ are isomorphic if and only if Var(N1) = Var(N2)
and there exists a bijection σ from Out(N1) to Out(N2), such that ∀E ∈
Out(N1),Lbl(E) = Lbl(σ(E)) and Dest(E) = Dest(σ(E)).

• An edge E of φ is dead if and only if Lbl(E) ∩ Dom(Var(E)) = ∅.

• A node N of φ is undecisive if and only if |Out(N)| = 1 and E ∈ Out(N) is
such that Dom(Var(E)) ⊆ Lbl(E).

Nevertheless, the structural differences between SDs and IAs (scope and literal
expressivity) raise the need for new definitions of contiguity and stammeringness.
Definition 7.1.4 (Contiguous edges). Two edges E1 andE2 of an SD φ are contigu-
ous if and only if Src(E1) = Src(E2) and Dest(E1) = Dest(E2).

The definition is much simpler than on IAs: there is indeed no condition on the
labels. On SDs, the union of two labels is always a valid label, whereas it is not the
case on IAs. On the contrary, the definition of a stammering node is more subtle
(but also more general) for SDs than for IAs.
Definition 7.1.5 (Stammering node). A non-root node N of an SD φ is stam-
mering if and only if all parent nodes of N are labeled by Var(N), and either∑

E∈Out(N)∥Lbl(E)∥ = 1 or
∑

E∈In(N)∥Lbl(E)∥ = 1.
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It is not sufficient that either |Out(N)| = 1 or |In(N)| = 1. If the edge in question
is labeled by a union, the reduction procedure does remove it, but can increase the
characteristic size of the others, as shown on Fig. 7.2. This is why we have to take
the size of the label into account: we decide that it must be exactly one interval.
Definition 7.1.6 (Reduced form). A set-labeled diagram φ is said to be reduced if
and only if no node of φ is isomorphic to another, stammering, or undecisive, and
no edge of φ is dead or contiguous to another.

As it is for interval automata, reduction can be achieved in time polynomial with
respect to the size of the SD.
Proposition 7.1.7 (Reduction). There exists a polytime algorithm that transforms
any SD φ into an equivalent reduced SD φ′ such that ∥φ′∥ ⩽ ∥φ∥.

Detailed proof p. 167.

7.2 Sublanguages of Set-labeled Diagrams

7.2.1 The SD Family

We examine a number of fragments of SD.
Definition 7.2.1 (Fragments of SD). FSD is the fragment of SD satisfying focusing-
ness [Definition 4.2.3].

Let < be a total strict order on I; OSD< is the restriction of SD to graphs ordered
by< [Definition 1.3.25]. OSD is the union of all OSD<, for every total strict order<.

SDD (resp. FSDD, OSDD<, OSDD) is the restriction of SD (resp. FSD, OSD<, OSD)
to strong and exclusive decision [Definition 1.3.23].

The “DD” notation refers to decision diagrams; we consider that satisfying strong
and exclusive decision, that is, containing no pure disjunctive or conjunctive nodes,
and only decision nodes with disjoint outgoing edges, is constitutive of decision
diagrams.

Note that formally, since ⊻ is not an actual variable, it is not meant to be con-
cerned by the “exclusive decision” requirement. Furthermore, since this special
variable represents pure GRDAG disjunction, an SD satisfies strong decision [Def-
inition 1.3.23] if and only if it does not contain any ⊻-node. However, we can
remark that if these ⊻-nodes satisfy exclusive decision, they are harmless: at most
one of their outgoing edges is not dead. In the GRDAG format, they actually cor-
respond to ∨-nodes with a single child—they can be harmlessly removed. All in
all, the formal GRDAG requirement of “strong and exclusive decision” on SDs
amounts to a simple requirement of “exclusive decision for all nodes (including
⊻-nodes)” when referring to SDs in a decision diagram form. In the following,
“exclusive decision” always refer to this decision diagram version.

Let us now present the sublanguage hierarchy of the SD family using a graph.
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Figure 7.3: Language inclusion hierarchy of the SD family. Languages satisfying
exclusive decision are inside the rightmost, yellow circle.

Proposition 7.2.2. The inclusion results of Figure 7.3 hold.

On all these fragments, we show that reduction works the same as for SD.
Proposition 7.2.3 (Reduction of SD fragments). Let L be any fragment of SD
from Definition 7.2.1. There exists a polytime algorithm that transforms any L-
representation φ into an equivalent reduced L-representation φ′ such that ∥φ′∥ ⩽
∥φ∥.

Detailed proof p. 168.

7.2.2 Relationship with the IA and BDD Families

Our purpose, when defining set-labeled diagrams, was to characterize the form
taken by interval automata when they are discretized with respect to meshes. These
two languages are hence very close to each other: this is obvious when considering
that they are both defined as subsets of NNF satisfying ∧-simple decision. However,
because of their respective interpretation domain and literal expressivity, neither of
the two languages is included in the other.

Proposition 7.2.4. It holds that SD ⊈ IA and IA ⊈ SD.

Proof. Let x ∈ I with Dom(x) = Z. Since Z is not R-tileable (it would require
an infinite union of singletons), there is at least one integer variable which is notR-
tileable: I ⊈ T . Hence DI,B ⊈ DT ,B, which implies that SD is not a sublanguage
of IA. Similarly, considering a variable with domain {π} (or any other noninteger),
we show that T ⊈ I, hence the second result.

However, when restricting them to common variables (integer variables with a fi-
nite domain, which we defined in Section 1.2.1 as E) and literals (the set of integer
singletons SZ), their similar structure becomes obvious.
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(some edges are not labeled with singletons). However, φSD is focusing, whereas
φIA is not.

Proposition 7.2.5. It holds that SDSZE = IASZE = SD ∩ IA.

Detailed proof p. 168.

Note that it is also the case for focusing IAs and SDs: FSDSZE = FIASZE = FSD∩FIA.
However, SDSZE and FSDSZE are not stable by the reduction procedure we defined
on SDs. Figure 7.4 shows why, and incidentally illustrates why choosing to label
edges with unions makes focusingness more general.

Interestingly enough, restricting SD to enumerated variables makes it a complete
language.
Proposition 7.2.6. SD is incomplete, but SDE is complete.

Proof. Let x ∈ I be a variable of domain Z. The Boolean function
[
x/2 ∈ Z

]
,

returning ⊤ for even numbers and ⊥ for odd numbers, is not representable as an
SD: we need an interval per even number, therefore representing the set of even
numbers as a finite union of closed intervals is impossible. Hence, there exists a
Boolean function on integer variables that has no representation as an SD: SD is
incomplete.

However, when variable domains are required to be finite, this is no longer the
case. Indeed, any function in DE,B has a finite model set; it is thus always possible
to build an SD representing the disjunction of all these models.

Let us now examine the relationship of the SD and BDD families. Since SDs are
close to interval automata, and we had BDDIRT ⊆ IA and FBDDIRT ⊆ FIA, we expect
to find similar results on SDs.
Proposition 7.2.7. The following properties hold:

BDDTZI = SDD,

FBDDTZI ⊊ FSDD,

156



7.3 From IAs to SDs

OBDDTZI = OSDD,

OBDDTZ<,I = OSDD<.
Detailed proof p. 168.

This is the reason why we used “DD” to name set-labeled diagrams satisfying ex-
clusive decision: SDD exactly corresponds to the general BDD language, restricted
to integer variables and Z-tileable labels. In particular, SDD contains BDDs on
Boolean variables, as stated in the following proposition.
Proposition 7.2.8. It holds that

SDDSBB = BDDSBB ,

OSDDSBB = OBDDSBB ,

OSDDSB<,B = OBDDSB<,B.

Proof. These come directly from Proposition 7.2.7 and Proposition 1.2.7.

We also get that MDD = OSDDSZE , since MDD = OBDDSZE . However, we can remark
that MDD ⊊ OSDDE , because of the literal expressivity of OSDD. We can even easily
show that OSDDE is strictly more succinct than MDD.
Proposition 7.2.9. It holds that MDD ⩽̸s OSDDE .

Proof. This comes from the fact that edges in an MDD are labeled with singletons.
Consider n ∈ N

∗, and a variable xn ∈ E of domain [0, . . . , 2n]. The function[
xn ̸= 0

]
has an OSDDE -representation the size of which is 1: one xn-node with

one outgoing edge labeled [1, . . . , 2n] and pointing to the sink. The size of all its
MDD-representations is exponential in n, since they need 2n edges—one for each
consistent value of xn.

To sum up, the SD family is closely related to the other decision diagram languages,
but it generalizes binary and multivalued decision diagrams by several aspects:

• more general variables than B and E ;

• relaxed literal expressivity, allowing exponential gains in space;

• some languages relax the exclusive decision requirement, notably allowing
pure disjunction nodes.

7.3 From IAs to SDs

We have seen, in the previous section, that interval automata are not particular set-
labeled diagrams—and vice-versa. However, we can transform IAs into SDs, by
discretizing them, as explained in the introduction of Part III. In this section, we
formally present this discretization, and prove the “equivalence” of the input IA
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and its discretization. Since IA and SD do not have the same interpretation domain,
we cannot prove this equivalence within our framework. We must first decide what
it means.

7.3.1 A Formal Definition of Discretization
Discretizing a continuous function is basically finding a discrete function that has
“the same behavior”. A discretization is often an approximation of the original
function. However, functions represented by IAs have a specific property, as ex-
plained in the introduction of Part III: their model set can only be a finite union of
boxes. This makes an exact discretization possible, as we will see.

The first thing we need to formally define is the discretization of a variable.
Basically, this discretization is based on some partition of its domain, and consists
of a discrete variable, together with some functions associating continuous values
with discrete ones.
Definition 7.3.1 (Discretization of a variable). Let x be an R-tileable variable, and
p a finite partition of Dom(x). The discretization of x with respect to p is the triple
δ = ⟨d, σ, π⟩ where

• d ∈ E is an enumerated variable, the domain of which verifies |Dom(d)| =
|p|;

• σ is a bijection from p to Dom(d);

• π : Dom(x) → p is the partition function, associating each value ω ∈
Dom(x) with the unique element of p containing ω.

Using this definition, each value ω in Dom(x) corresponds to a unique value ωδ in
Dom(d), given by

ωδ = σ(π(ω)),

and each dicrete value ωδ in Dom(d) corresponds to a set of “interchangeable”
values ω in Dom(x), verifying

ω ∈ σ−1(ωδ).

Remark that any R-tileable variable x has at least one (degenerate) discretization:
indeed, {Dom(x)} is a finite partition of Dom(x).

We can extend this definition to a set of variables, joining together the functions
σ and π of each variable.
Definition 7.3.2 (Discretization of a scope). Let X ⊆ T be a finite set ofR-tileable
variables, denoted as X = {x1, . . . , xn}. For each xi ∈ X , we consider a finite
partition pi of Dom(xi), and δi = ⟨di, σi, πi⟩ the discretization of xi with respect to
pi.

A discretization of X is a triple ∆ = ⟨D,Σ,Π⟩, with

• D = {d1, . . . , dn} the set of all di;
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• Σ: p1 × · · · × pn → Dom(D), the function defined as the concatenation of
functions σ1, . . . , σn;

• Π: Dom(X) → p1 × · · · × pn the partition function, defined as Π( #—x ) =⟨
π1(

#—x |x1), . . . , πn(
#—x |xn)

⟩
.

In the same way as for single variables, we get that each X-assignment #—x corre-
sponds to a unique D-assignment

#—

d = Σ(Π( #—x )), and that a given D-assignment
#—

d is associated with a set of X-assignments Σ−1(
#—

d ).
We now have all the elements necessary to define the discretization of a Boolean

function. Since we want an exact discretization, the original function applied on
some assignment must return the same output as the discrete function applied on
the corresponding discrete assignment.
Definition 7.3.3 (Discretization of a function). Let f ∈ DT ,B be a Boolean function
on R-tileable variables, and X its scope. Let ∆ = ⟨D,Σ,Π⟩ be a discretization of
X . A discretization of f with respect to ∆ is a Boolean function f∆ ∈ DE,B, of
scope D, such that

f ≡ f∆ ◦ Σ ◦Π.

Note that there does not always exist a discretization for a given function.
Indeed, we want the discretization to be equivalent to the continuous function.
Hence, since we require domain partitions to be finite, functions that are not repre-
sentable as a union of boxes have no discretization. Consider once again the func-
tion

[
x = y

]
for example: for its discretization to be equivalent, infinite partitions

of Dom(x) and Dom(y) would be needed (such as SR). Using finite partitions
only, it is always possible to find two {x, y}-assignments yielding different results
with f , but corresponding to the same {dx, dy}-assignment—and thus yielding the
same result with f∆.

However, there exists a discretization for any function representable as an IA,
or equivalently, Expr(IA) [Definition 1.2.11] is included in the set of discretizable
functions. This is a corollary of the fact that any IA can be discretized—which we
prove in the next section.

7.3.2 Transforming IAs into SDs
Algorithm 7.1 implements the procedure described informally in the introduction
of Part III. It builds an SD corresponding to an input IA, using meshes obtained as
described in the proof of Lemma 4.4.4, and indexing sequences—that is, for each
mesh M = {M1, . . . ,Mn}, a sequence of values Indexes = ⟨m1, . . . ,mn⟩ such
that mi ∈ Mi for all i ∈ [1, . . . , n]. The SD built has the same characteristic size
as the IA (it is actually even smaller, since variable domains, being intervals, are
of characteristic size 1 in the SD framework), and fits our formal definition of a
discretization. We use this procedure to prove the following proposition.
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Algorithm 7.1Given an IAφ and an indexing sequence Indexesi for every variable
xi in Scope(φ), builds an SD ψ representing a discretization of JφK.

let ψ be the empty SD
for each node N in φ, ordered from the sink to the root do

let xi := Var(N)
add to ψ a node N ′ labeled by di
for each E ∈ Out(N) do

let S := ∅
for eachmj ∈ Indexesi do

ifmj ∈ Lbl(E) then
S := S ∪ {j}

let N ′E be the node in ψ corresponding to Dest(E)
add to ψ an edge from N ′ to N ′E , labeled S

Proposition 7.3.4. There exists a polytime algorithm that maps any IA φ to an SD
ψ, of size ∥ψ∥ ⩽ ∥φ∥, and such that JψK is a discretization of JφK.

Detailed proof p. 168.

This means that using this discretization, we lose no memory space and no infor-
mation. Embarking an SD instead of an IA (along with tables representing each
bijection σi) is thus completely harmless from a semantic point of view, and saves
memory space: only

∑
xi∈Scope(φ) 2ni real numbers need to be embarked for rep-

resenting the σ bijections (two for each interval of each mesh). By construction of
the mesh, this number is always smaller than the number of real numbers necessary
to represent φ—and it can potentially be much inferior, for example when a same
bound is used a lot in the graph.

Of course, this would not be interesting if the procedure did not maintain fo-
cusingness, but it actually does.
Proposition 7.3.5. There exists a polytime algorithm that maps any FIAφ to an FSD
ψ, of size ∥ψ∥ ⩽ ∥φ∥, and such that JψK is a discretization of JφK.

Detailed proof p. 170.

This section aimed at providing a formal motivation for the study of the SD
family. Now that we know FIAs can be efficiently represented as FSDs, we examine
the knowledge compilation properties of languages from this family.

7.4 The Knowledge Compilation Map of SD

This section contains the knowledge compilation map of the SD family. Most of the
proofs are gathered in the end of the chapter [§ 7.5], for the sake of readability. We
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start by pointing out some fundamental properties, that entail many results in the
map.

7.4.1 Preliminaries
Combining SDs

In a similar fashion as for interval automata and binary decision diagrams, there ex-
ists simple procedures for combining SDs, using pure disjunctive nodes or making
chains of graphs.
Proposition 7.4.1 (Disjunction). Let < be a total strict order on I. SD, FSD, and
OSD< satisfy ∨C and ∨BC.

Detailed proof p. 170.

Proposition 7.4.2 (Conjunction). SD and SDD satisfy ∧C and ∧BC.

Detailed proof p. 171.

Importantly enough, terms and clauses can be represented in polytime using any of
the languages in the SD family.
Proposition 7.4.3 (Terms and clauses). Let L be any of the SD fragments we defined;
it holds that L ⩽p termTZI and L ⩽p clauseTZI .

Detailed proof p. 171.

From these three propositions, we trivially get fundamental properties about the
relationship between the SD languages and the DNF and CNF ones.
Proposition 7.4.4. Let < be a total strict order on I. The following relations hold:

OSD< ⩽p DNFTZI ,

SDD ⩽p CNFTZI .

Proof. Any term can be expressed as an OSD<-representation in polytime; and
since OSD< satisfies ∨C, obtaining the disjunction of a set of terms is also polytime.

Similarly, any clause can be expressed as an SDD-representation in polytime,
and SDD satisfies ∧C, hence the second result.

In particular, we get that OSD< ⩽p DNFSBB and SDD ⩽p CNFSBB , which brings im-
portant results, for succinctness, queries, and transformations.

Validity of FSDDs
Proposition 7.4.5. FSDD satisfies VA.

Detailed proof p. 172.

The proof relies on Algorithm 7.2, which roughly checks whether “what enters a
node is equal to what goes out of it”. As checking validity on DNF is untractable,
this notably allows to prove that FSDD does not satisfy ∨C.
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Algorithm 7.2 Given an FSDD φ, checks whether φ is valid.
1: for each x ∈ Scope(φ) do
2: for each node N in φ do
3: let Sx,N := ∅
4: Sx,Root(φ) := Dom(x)
5: for each node N in φ, ordered from the root to the sink do
6: let x := Var(N)
7: if

∪
E∈Out(N) Lbl(E) ⊉ Sx,N then

8: return false
9: for each E ∈ Out(N) do

10: Sx,Dest(E) := Sx,Dest(E) ∪ Sx,N ∪ Lbl(E)
11: for each y ∈ Scope(φ) \ {x} do
12: Sy,Dest(E) := Sy,Dest(E) ∪ Sy,N
13: return true

Disjoining FSDDs with clauses
However, any FSDD can be tractably disjoined with any clause.
Proposition 7.4.6. FSDD satisfies ∨clC.

Detailed proof p. 173.

Together with validity, this property is the key allowing us to prove that FSDD sat-
isfies IM, which has important consequences on succinctness, much like CE; see
Lemma 7.5.6 (p. 174).

Negation of SDDs
Negating an SDD can be performed by using Algorithm 7.3, that recursively “com-
plements” each node, starting from the sink.
Proposition 7.4.7 (Negation). SDD, OSDD, and OSDD< satisfy ¬C.

Detailed proof p. 177.

However, this procedure does not maintain focusingness, and it is actually unknown
whether FSDD satisfies ¬C.

7.4.2 Succinctness

Theorem 7.4.8 (Succinctness of the SD family). The results of Table 7.1 hold.

Detailed proof p. 184.

Figure 7.5 sums up the succinctness results of Theorem 7.4.8, as well as some
other results about the succinctness of the SD family as compared with BDD (see
§ 7.2.2). Roughly speaking, we can see that imposing focusingness, exclusivity or
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Algorithm 7.3 Computes the negation of an SDD φ.
1: if φ is empty then
2: return the sink-only graph
3: else if φ is the sink-only graph then
4: return the empty graph
5: let ψ be the sink-only graph
6: let T := ∅ be a set of couples of nodes, associating each node in φ with a node

in ψ
7: for each nodeN in φ, ordered from the sink to the root, excluding the sink do
8: create a node N ′ labeled by the same variable x as N
9: let U := Dom(x) \

∪
E∈Out(N) Lbl(E)

10: if U ̸= ∅ then
11: add to N ′ an outgoing edge Ecompl labeled by U and pointing to the

sink of ψ
12: for each E ∈ Out(N) do
13: let D := Dest(E)
14: if there exists a couple ⟨D,D′⟩ ∈ T then //D has a corresponding

node D′ in ψ
15: add to N ′ an outgoing edge E′ labeled by Lbl(E) and pointing

to D′

16: if N ′ has at least one outgoing edge then
17: add N ′ to ψ
18: add ⟨N,N ′⟩ to T
19: let R := Root(φ)
20: if there exists a couple ⟨R,R′⟩ ∈ T then // the root has a corresponding

node
21: return ψ
22: else
23: return the empty graph
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..SD. FSD. OSD. OSD<.

SDD

.

FSDD

.

OSDD

.

OSDD<

.

BDDSBB

.

FBDDSBB

.

OBDDSBB

.

OBDDSB<,B

Figure 7.5: Relative succinctness of the SD and BDDSBB families. On an edge linking
L1 and L2, if there is an arrow pointing towards L1, it means that L1 ⩽s L2. If there
is no symbol on L1’s side (neither an arrow nor a circle), it means that L1 ⩽̸s L2.
If there is a circle on L1’s side, it means that it is unknown whether L1 ⩽s L2 or
L1 ⩽̸s L2 holds. Relations deducible by transitivity are not represented, which
means that two fragments not being ancestors to each other are incomparable with
respect to succinctness.

L SD SDD FSD FSDD OSD OSDD OSD< OSDD<
SD ⩽s ⩽s ⩽s ⩽s ⩽s ⩽s ⩽s ⩽s

SDD ? ⩽s ? ⩽s ? ⩽s ? ⩽s

FSD ⩽̸s
∗ ⩽̸s

∗ ⩽s ⩽s ⩽s ⩽s ⩽s ⩽s

FSDD ⩽̸s
∗ ⩽̸s

∗ ⩽̸s
∗ ⩽s ⩽̸s

∗ ⩽s ⩽̸s
∗ ⩽s

OSD ⩽̸s ⩽̸s ? ? ⩽s ⩽s ⩽s ⩽s

OSDD ⩽̸s ⩽̸s ⩽̸s ⩽̸s ⩽̸s ⩽s ⩽̸s ⩽s

OSD< ⩽̸s ⩽̸s ⩽̸s ⩽̸s ⩽̸s ⩽̸s ⩽s ⩽s

OSDD< ⩽̸s ⩽̸s ⩽̸s ⩽̸s ⩽̸s ⩽̸s ⩽̸s ⩽s

Table 7.1: Results about succinctness. A star (∗) indicates a result that holds unless
the polynomial hierarchy PH collapses.

ordering may lead to an exponential increase in space. Let us give a few indications
about why the most crucial results hold.

Results holding modulo the collapse of the polynomial hierarchy all come from
Lemma 4.3.10, that states that no polysize compilation function can make clausal
entailment on a CNF tractable.

The proof of OSD< ⩽̸s OSDD comes from the classical
∧n
i=1

[
yi = zi

]
family

of functions, that has polynomial representations for some variable orders and only
exponential representations for some others—which proves that in the worst case,
one cannot impose an order without requiring exponential space.

To prove that OSDD ⩽̸s FSDD, we use the function representing the n-coloring
problem of a star graph with n vertices. Figure 7.6 is an illustration of what happens
when n = 3: putting the center variable at the root gives polynomial OSDDs, while
putting it in last position can give exponential OSDDs. We use this to build an
FSDD that has no equivalent OSDD of polynomial size.
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Figure 7.6: The coloring problem on a star graph with 3 variables and 3 colors, that
is, x2 ̸= x1 ̸= x3. The OSDD on the right is ordered with the center variable x1 in
last position, whereas the OSDD on the left is ordered with x1 in first position.

Finally, OSDD ⩽̸s OSD< is implied by the Boolean-variable succinctness map
[Theorem 1.4.17]: if it were false, we would get OBDDSBB ⩽s DNFSBB , which is
impossible.

7.4.3 Queries and Transformations

Theorem 7.4.9. The results in Tables 7.2 and 7.3 hold.

Detailed proof p. 196.

Some remarks are in order. First, as it is usually the case in knowledge compi-
lation, languages satisfying many queries do not satisfy many transformations, and
vice-versa. As in the IA knowledge compilation map, there is a clear similarity be-
tween focusing SD languages and decomposable NNF ones [Theorem 1.4.18]: FSD
and DNNF satisfy the same set of queries and transformations, as well as FSDD and
d - DNNF —whereas focusing SDs are not decomposable structures.

We can also see that OSDD and OSDD<, being direct extensions of OBDDSBB and
OBDDSB<,B, have unsurprisingly very similar properties. There is however an im-
portant difference: while Boolean OBDDs support SFO in polytime, integer ones
do not support it. This is because the size of the variable domains are known in
the BDDSBB framework: forgetting a variable amounts to a binary disjunction using
Shannon’s decomposition. On the contrary, in the case of SDs, domains are un-
bounded, so to apply the same procedure, unbounded disjunction is necessary—yet
it is not satisfied by OSDD or OSDD<.

Note also the similarity between OSD and FSD. They satisfy the exact same set
of queries and transformations—except for ∨C and ∨BC, of which we do not know
whether they are satisfied by OSD.
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L C
O

V
A

M
C

C
E

IM E
Q

SE M
X

C
X

C
T

M
E

SD ◦ ◦
√

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
SDD ◦ ◦

√
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

FSD
√

◦
√ √

◦ ◦ ◦
√ √

◦
√

FSDD
√ √ √ √ √

? ◦
√ √

?
√

OSD
√

◦
√ √

◦ ◦ ◦
√ √

◦
√

OSDD
√ √ √ √ √ √

◦
√ √ √ √

OSD<
√

◦
√ √

◦ ◦ ◦
√ √

◦
√

OSDD<
√ √ √ √ √ √ √ √ √ √ √

Table 7.2: Results about queries;
√

means “satisfies”, and ◦ means “does not sat-
isfy, unless P = NP”.

L C
D

T
R

FO SF
O

E
N

SE
N

∨
C

∨
B
C

∨
cl
C

∧
C

∧
B
C

∧
tC

¬
C

SD
√

◦ ◦
√

◦
√ √ √ √ √ √ √

?
SDD

√
◦ ◦

√
◦

√ √ √ √ √ √ √ √

FSD
√ √ √ √

◦ ◦
√ √ √

◦ ◦
√

◦
FSDD

√
◦ ◦ ◦ ◦ ◦ ◦ ◦

√
◦ ◦

√
?

OSD
√ √ √ √

◦ ◦ ? ?
√

◦ ◦
√

◦
OSDD

√
• • • • • • ◦

√
• ◦

√ √

OSD<
√ √ √ √

◦ ◦
√ √ √

◦
√ √

◦
OSDD<

√
• • • • • •

√ √
•

√ √ √

Table 7.3: Results about transformations;
√

means “satisfies”, • means “does not
satisfy”, and ◦ means “does not satisfy, unless P = NP”.
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From a more practical point of view, when one needs to execute queries on
compiled forms, but no transformation except conditioning (e.g., in configuration
applications), FSDDs are more interesting than OSDDs—they can be much more
compact, while satisfying almost the same queries. Imposing a variable order (that
is, going from FSDD to OSDD) is worthwhile whenever one of the ¬C, SEN, or SFO
transformations is required. Relaxing the requirement of exclusive decision, we get
the FSD fragment, which moreover satisfies FO and ∨C; FSD particularly suits appli-
cations like planning, where one needs to often check consistency, forget variables,
and extract models.

***

After these theoretical considerations about SDs, Chapter 8 (which starts on
page 199, after the proofs) takes a more practical point of view, examining a way
to compile set-labeled diagrams.

7.5 Chapter Proofs

7.5.1 Reduction
Proof of Proposition 7.1.7 [p. 154]. The proof of Proposition 4.1.15 still works
here. Checking contiguity is simpler, and the “stammering” operation does not cre-
ate more edges than it deletes: ∥Lbl(Ein)∩Lbl(Eout)∥ < ∥Lbl(Ein)∥+∥Lbl(Eout)∥
since either ∥Lbl(Ein)∥ or ∥Lbl(Eout)∥ equals 1, which means that the label is a sin-
gle interval.

We also prove Proposition 7.1.7 thanks to Algorithm 4.1 [p. 102], using the
following lemma.
Lemma 7.5.1. Algorithm 4.1 [p. 102] maintains the exclusive decision property on
SDs.

Proof. Let φ be an SD satisfying the exclusive decision property.

• “Stammering” operation: parent labels are modified only by removal of val-
ues, so they are still exclusive after the operation.

• “Dead” operation: suppressing edges does not have any influence on exclu-
sivity.

• “Contiguous” operation: the two contiguous edges were disjoint with the
other edges, so their union also is.

• “Undecisive” operation: no edge is modified or added.

• “Isomorphism” operation: no edge is modified or added.
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Hence, the result of Algorithm 4.1 still satisfies the exclusive decision property.

Proof of Proposition 7.2.3 [p. 155]. The argumentation developed in the proof of
Proposition 4.2.4 is still valid for SDs. Algorithm 4.1 maintains the focusingness
property on SDs, which proves the result for FSD. It is obvious that it also maintains
the ordering property (the order of nodes is not modified; nodes can be removed,
but this does not affect the ordering property). The proposition thus holds for OSD<
and OSD. Last, since the procedure moreover maintains strong decision (it never
adds ⊻-nodes) and exclusive decision [Lemma 7.5.1], we get the result for SDD,
FSDD, OSDD<, and OSDD.

7.5.2 Relationship with Other Languages

Proof of Proposition 7.2.5 [p. 156]. An integer interval is R-tileable if and only
if it is finite, so we get E = I ∩ T . We also get that the intersection of IR andTZ
is the set of singletons of Z.

Now, let φ be an SDSZE -representation. Since it is an NNFSZE -representation sat-
isfying ∧-simple decision, it belongs to IASZE , by definition. Hence, SDSZE ⊆ IASZE ,
and SDSZE ⊆ SD ∩ IA (indeed, SDSZE ⊆ SD and IASZE ⊆ IA).

We only have to prove that SD∩ IA ⊆ SDSZE to complete the proof. Let φ be an
SD∩ IA-representation. Its scope has to be included in both I and T , and therefore
in E ; similarly, its literals belong to both IR and TZ—and thus to SZ. All in
all, φ is an NNFSZE -representation satisfying ∧-simple decision: it is an element of
SDSZE .

Proof of Proposition 7.2.7 [p. 156]. SDD is the restriction of NNFTZI to strong and
exclusive decision, therefore it is equal to NNFTZI ∩BDD. Now, we show that BDDTZI
is also equal to NNFTZI ∩ BDD.

Indeed, since BDDTZI is the restriction of BDD to variables from I and to literal
expressivityTZ, it is therefore included in NNFTZI ∩BDD. Now, letφ ∈ RNNFTZI ∩BDD;
since it is a BDD-representation, of literal expressivityTZ and of scope included in
I, by definition of literal expressivity and thanks to Proposition 1.2.5, we get that
it is included in BDDTZI . Thus BDDTZI = NNFTZI ∩ BDD = SDD. The proof is similar
for the two other equalities.

Now, FBDDTZI ⊆ BDDTZI , so FBDDTZI ⊆ SDD. Since variables are never re-
peated along a path of an FBDD, any FBDDTZI -representation is trivially focusing.
Hence FBDDTZI ⊆ FSDD. Since not all focusing SDDs are read-once, we get the
result.

7.5.3 Discretization of IAs

Proof of Proposition 7.3.4 [p. 160]. Let φ be an IA. For each variable xi ∈
Scope(φ), we consider a number of elements. First, let Mi = {M i

1, . . . ,M
i
ni
}

be a mesh of xi in φ; it can be built with a simple traversal of φ, as shown in the
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proof of Lemma 4.4.4. Second, we consider an indexing sequence Indexesi associ-
ated with Mi, that is, Indexesi = ⟨m1, . . . ,mni⟩ such that for all j ∈ [1, . . . , ni],
mj ∈ M i

j . We impose the harmless condition that the mj are in ascending order
(∀j ∈ [1, . . . , ni − 1],mj < mj+1). Last, we consider a discrete variable di ∈ E ,
of domain [1, . . . , ni].

Algorithm 7.1 [p. 160] uses these elements to build an SD ψ. Let us first show
that ∥ψ∥ is less than ∥φ∥. Each node in φ corresponds to one node in ψ, each edge
in φ corresponds to one edge in ψ. This is not enough to prove our claim, since
while IA edges are of size 1, the size of SD edges depends on their label. However,
we prove that they are all of size 1 too.

Indeed, suppose there is an edge E in ψ such that ∥E∥ ⩾ 2. This means it
is labeled with a union of disjoint integer intervals: denoting xi = Var(E), there
exists three integers a, b, and c in [1, . . . , ni] such that a < b < c and a ∈ Lbl(E),
c ∈ Lbl(E), but b /∈ Lbl(E). Then the label of the edge E′ in φ corresponding
to E contains ma and mc, but not mb. Since the mj are in ascending order by
hypothesis, this means Lbl(E′) is not an interval, which is absurd. Hence all edges
in ψ are of size 1.

Now, for each i, ∥Dom(di)∥ = 1 since Dom(di) is an integer interval. Yet
∥Dom(xi)∥ ⩾ 1, as it is an R-tileable set. All in all, φ and ψ have the same “edge
size”, and the variables of φ all have greater size; hence ∥ψ∥ ⩽ ∥φ∥.

We now prove that JψK is a discretization of JφK. Let us consider, for each xi,
the discretization δi = ⟨di, σi, πi⟩ of xi with respect to Mi. Bijection σi simply
associates with any element M i

j of Mi its index j. Function πi associates with
any value in Dom(xi) the unique element of Mi to which it belongs. Let ∆ =
⟨D,Σ,Π⟩ be the discretization of Scope(φ) defined using all the δi. We show
that JψK is a discretization of JφK with respect to ∆. To this end, we prove thatJφK ≡ JψK ◦ Σ ◦Π.

We consider #—x ∈ Dom(Scope(φ)).

(⇒) Let us suppose that JφK( #—x ) = ⊤. Then there exists a path p in φ that is
compatible with #—x . We consider the path p′ in ψ corresponding to p. Let E′

be an edge along p′ and E its corresponding edge in p. Let xi = Var(E)
and ω = #—x |xi . Since E is compatible with #—x , ω ∈ Lbl(E). Denoting M i

j

the element of mesh Mi containing ω, we know that M i
j ⊆ Lbl(E), by

definition of a mesh. Hence the indexing value mj ∈ Indexesi is in Lbl(E)
too, therefore j ∈ Lbl(E′) by construction.

Now, by definition of the discretization, Σ(Π( #—x ))|di = j. Therefore the D-
assignment Σ(Π( #—x )) is compatible with E′. Since this holds for any E′, it
is compatible with the whole path p′, which proves that it is a model of ψ: it
holds that JψK(Σ(Π( #—x ))) = ⊤, and hence (JψK ◦ Σ ◦Π)( #—x ) = ⊤.

(⇐) Let us suppose that (JψK ◦ Σ ◦ Π)( #—x ) = ⊤. Let
#—

d = Σ(Π( #—x ));
#—

d is
a model of ψ. Let us consider a path p in ψ compatible with

#—

d , and its
corresponding path p′ inφ. Each edgeE along p verifies

#—

d |Var(E) ∈ Lbl(E).
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Denoting di = Var(E) and j =
#—

d |di , we can infer that the indexing value
mj ∈ Indexesi belongs to the label of the edge E′ corresponding to E in φ.
Therefore,M i

j ∩Lbl(E′) ̸= ∅, and this implies, by definition of a mesh, that
M i
j ⊆ Lbl(E).

Now,Σ(Π( #—x ))|di = j means thatσi(πi( #—x |xi)) and thusπi( #—x |xi) = σ−1i (j),
from which we get #—x |xi ∈ M i

j . Hence #—x |xi ∈ Lbl(E′): E′ is compatible
with #—x , as are all edges along p′, so #—x is a model of φ. This proves thatJφK( #—x ) = ⊤.

Proof of Proposition 7.3.5 [p. 160]. Algorithm 7.1 [p. 160] maintains focusing-
ness. Indeed, if an edge (on some variable x) is not focusing in ψ, it means that
there exists an integer j in its label that does not belong to one of its ancestor’s la-
bel. Considering the corresponding edges and value in φ, this implies that there is a
mesh index mj and two x-edges E and E′ such that mj /∈ Lbl(E), mj ∈ Lbl(E′),
and yet E is an ancestor of E′, which means φ is not focusing.

Therefore, by contrapositive, if φ is focusing then ψ is focusing. Our procedure
fits all the requirements of the proposition (as proven in Proposition 7.3.4) and
moreover maintains focusingness, which proves the claim.

7.5.4 Preliminaries to the Map
Combining SDs

Lemma 7.5.2. There exists a linear algorithm mapping every finite set Φ of SDs to
an SD ψ such that JψK ≡ ∨

φ∈ΦJφK. In addition, if all SDs in Φ are focusing (resp.
ordered by some total strict order <), ψ is also focusing (resp. ordered by <).

Proof. The proof is similar to that of Proposition 4.3.3: we copy all SDs of Φ into
ψ, fuse their sinks, and create a new root node forψ, labeled by ⊻, with |Φ| outgoing
edges, each one labeled by {0} and pointing to the root of a different φ ∈ Φ. Since
neither node order nor edge labels are modified in each φ, the procedure maintains
focusingness and ordering (provided that all φ ∈ Φ be ordered with respect to the
same <). The algorithm is obviously linear in

∑
φ∈Φ∥φ∥.

Proof of Proposition 7.4.1 [p. 161]. As a direct corollary of Lemma 7.5.2, we get
that SD, FSD, and OSD< satisfy ∨C, and thus ∨BC.

Lemma 7.5.3. There exists a linear algorithm mapping every finite set Φ of SDs to
an SD ψ such that JψK ≡

∧
φ∈ΦJφK. In addition, if all SDs in Φ are deterministic,

ψ is also deterministic.

Proof. The proof is similar to that of Proposition 4.3.4: we build ψ by replacing
the sink of each SD by the root of the following SD, the root ofψ ending up being the
root of the first SD, and its sink the sink of the last SD. The procedure is obviously
linear in

∑
φ∈Φ∥φ∥, and since no label is modified, ψ is deterministic if every

φ ∈ Φ is deterministic.
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Proof of Proposition 7.4.2 [p. 161]. As a direct corollary of Lemma 7.5.3, we get
that SD and SDD satisfy ∧C, and thus ∧BC.

Algorithm 7.4 Given a termTZI -representation γ, and a total strict order < on
Scope(γ), builds an OSDD<-representation ψ of JγK.

1: if γ is a constant (⊤ or ⊥) then
2: return γ
3: let ψ be the sink-only SD
4: for each x ∈ Scope(γ), ordered in descending < order do
5: let S := Dom(x)
6: for each literal ⟨x,A⟩ in γ do
7: S := S ∩A
8: add to φ an x-node N with one outgoing edge, labeled S and pointing to

Root(φ)
9: let N be the new root of φ

Algorithm 7.5 Given a clauseTZI -representation γ, and a total strict order < on
Scope(γ), builds an OSDD<-representation ψ of JγK.

1: if γ is a constant (⊤ or ⊥) then
2: return γ
3: let ψ be the sink-only SD
4: for each x ∈ Scope(γ), ordered in descending < order do
5: let S := ∅
6: for each literal ⟨x,A⟩ in γ do
7: S := S ∪A
8: add to φ an x-node N
9: add to N an outgoing edge, labeled S and pointing to Sink(φ)

10: add to N an outgoing edge, labeled Dom(x) \ S and pointing to Root(φ)
11: let N be the new root of φ

Lemma 7.5.4. Let < be a total strict order on I. It holds that OSDD< ⩽p termTZI
and OSDD< ⩽p clauseTZI .

Proof. We use Algorithms 7.4 and 7.5. Both procedures are trivially polynomial
in ∥γ∥, and they return an SD that is exclusive and ordered with respect to <.

Proof of Proposition 7.4.3 [p. 161]. As a direct consequence of Lemma 7.5.4,
we get that any language L such that L ⩽p OSDD< verifies both L ⩽p termTZI and
L ⩽p clauseTZI . This is in particular the case for languages L of which OSDD< is
a sublanguage—hence the result, thanks to Proposition 7.2.2.
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Validity of FSDDs
Proof of Proposition 7.4.5 [p. 161]. We prove that FSDD satisfies VA.

Algorithm 7.2 [p. 162], applied to an FSDD φ, returns true if and only if φ
is valid. In this algorithm, we consider all labels to be included in the domain of
their corresponding variable; this is not the case in general, nor is it enforced by
reduction, but it is trivial to transform any FSDD to fit that condition. Basically,
make the intersection of each label with the domain of its corresponding domain;
this can be done in time linear in the size of the FSDD.

The idea of the algorithm is to check whether what comes in each node is in-
cluded into what comes out, i.e., no value is “lost” (what comes in the root being
the whole Dom(Scope(φ))).

Now, our algorithm checks whether the following property, that we denote
InEqOut(N), holds for each node N :

• if there exists a path from the root to N that contains no other x-node than
N , then

∀ω ∈ Dom(Var(N)), ∃Eω ∈ Out(N), ω ∈ Lbl(Eω);

• if not, then for every ancestor edge E of N

∀ω ∈ Lbl(E), ∃Eω ∈ Out(N), ω ∈ Lbl(Eω).

Our algorithm does this by gathering at each node the last label encountered for
each variable (line 10), and making at each node, for each variable, the union of
gathered labels of all incoming paths (Lines 10 and 12). It checks on line 7 whether
the union of outgoing labels contains all the computed “label set” for the node’s
variable. The root is treated as a special case, allowing us to check the first item of
InEqOut(N)’s definition.

Now, let us prove that

∀N ∈ Nφ, InEqOut(N) ⇔ ⊤ |= φ.

(⇒) We show that for any assignment #—y ∈ Dom(Scope(φ)), there exists a path in
the graph that is compatible with #—y . Let us consider #—y ∈ Dom(Scope(φ)).
At each node N labeled by any variable x, we are assured to have the possi-
bility to choose an outgoing edge compatible with #—y |x. Indeed, either this is
the first x-node we encounter, and thus there exists an outgoing edge com-
patible with any value in Dom(x) (first item of InEqOut(N)), or we already
encountered at least one x-node, and chosen a value ω for x; then the second
item of InEqOut(N)’s definition ensures that there exists an outgoing edge
compatible with ω.

As it is true for each node, there always exists a compatible edge that can be
taken, therefore we are assured to reach the sink; overall, there exists a path
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from the root to the sink of φ that is compatible with #—y . This proves that #—y
is a model of φ.

As it is true for any assignment #—y ∈ Dom(Scope(φ)), φ is valid.

(⇐) We prove this by contraposition. Suppose there exists a nodeN that does not
verify InEqOut(N). Denoting Var(N) = x, this means that

– either (a) there exists a path pR from the root to N that contains no
other x-node than N , and yet there exists a value ω ∈ Dom(x) such
that ∀E ∈ Out(N), ω /∈ Lbl(E);

– or (b) there is no such path, and there exists an ancestor edgeEancestor of
N and a value ω ∈ Lbl(Eancestor) such that ∀E Out(N), ω /∈ Lbl(E).

Let us consider a path p from the root to n, the one denoted by pR in case (a),
or any path containing Eancestor in case (b). Let #—y ∈ Dom(Scope(φ)) be an
assignment compatible with p, and such that #—y |x = ω. Such an assignment
exists, because (i) asφ is focusing, all paths from the root toN are compatible
with at least one model (there is no contradiction between edges—as long as
φ is reduced, of course), and (ii) p has been defined in both cases (a) and (b)
to be compatible with value ω for x.

Let us suppose #—y ∈ Mod(φ). There exists a path p′, from the root to the sink
of φ, that is compatible with #—y . Determinism imposes that p and p′ be equal
from the root to N ; indeed, only one acceptable choice is possible at each
node. Since p′ is compatible with #—y , this means there is an edgeE going out
of N and such that ω ∈ Lbl(E), which has been supposed to be false. By
contradiction, #—y /∈ Mod(φ), hence φ is not valid.

Overall, our polytime algorithm checks that InEqOut(N) holds for all N , and we
showed that it is equivalent to checking validity. As a consequence, FSDD satisfies
VA.

Disjoining FSDDs with clauses, and other succinctness preliminaries
Proof of Proposition 7.4.6 [p. 162]. Let γ be a clause, and φ an FSDD. First, we
note that JφK ∨ JγK ≡ (JφK ∧ ¬JγK) ∨ JγK.

Let us suppose that γ =
[
x1 ∈ A1

]
∨ · · · ∨

[
xk ∈ Ak

]
. Then the term δ =[

x1 ∈ Dom(x1) \ A1

]
∧ · · · ∧

[
xk ∈ Dom(xk) \ Ak

]
is equivalent to ¬JγK, and

can be obtained in polytime [Prop. 7.4.3]. Since FSDD satisfies ∧tC [Lemma 7.5.7],
we can thus obtain in polytime an FSDD ψt representing JφK ∧ ¬JγK. This FSDD
moreover has an important property: for all x ∈ Scope(γ), and all literal ⟨x,A⟩ in
γ, the label of each x-edge of ψt is included in Dom(x) \A.

This is the key that will allow us to disjoin ψt with γ while maintaining fo-
cusingness. We can use a procedure similar to Algorithm 7.5 [p. 171], with the
difference that on line 3, instead of using the sink-only SD, we use the SD ψt we
just built. Obviously enough, the resulting SD represents JψtK∨γ, and is focusing,
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since the new x-edges pointing to the root ofψt are labeled Dom(x)\A—a superset
of all x-edge labels in ψt. As the procedure is polytime, we get that FSDD satisfies
∨clC.

Lemma 7.5.5. FSDD satisfies IM.

Proof. Let γ be a term. Checking whether γ |= φ is equivalent to checking
whether JφK ∨ ¬JγK is valid.

Let us suppose that γ =
[
x1 ∈ A1

]
∧ · · · ∧

[
xk ∈ Ak

]
. Then the clause δ =[

x1 ∈ Dom(x1)\A1

]
∨ · · ·∨

[
xk ∈ Dom(xk)\Ak

]
is equivalent to ¬JγK, and can

be obtained in polytime [Prop. 7.4.3]. Since FSDD satisfies ∨clC [Proposition 7.4.6]
and VA [Prop. 7.4.5], checking whether JφK∨ JδK is valid can be done in polytime,
hence FSD satisfies IM.

The following lemma is another corollary of Lemma 4.3.10, detailing the con-
sequences of the fact that FSDD satisfies IM.
Lemma 7.5.6. Let L be a Boolean representation language satisfying IM. It holds
that L ⩽̸s DNFSBB unless PH collapses at the second level.

Proof. The proof is close to that of d - DNNF ⩽̸s DNF [DM02]. Suppose that L ⩽s

DNFSBB . Let us consider the compilation function comp that associates with any
Boolean CNF Σ, an L-representation of ¬Σ. By De Morgan’s laws, the negation of
Σ is a Boolean DNF, so comp is polysize, by hypothesis. We show that we can use
comp(Σ) to check in polytime whether Σ |= γ, for any Boolean clause γ.

Checking whether Σ |= γ is equivalent to checking whether ¬Σ ∨ γ is valid,
which is in turn equivalent to checking whether ¬γ |= ¬Σ. Since γ is a clause, ¬γ
is a term, applying once again the laws of De Morgan.

Since L satisfies IM, it is possible to check in polytime whether a given term
entails a given L-representation. It is hence possible to check in polytime whether
¬γ |= comp(Σ) holds. By construction, the answer is the same as when checking
whether Σ |= γ.

All in all, comp is a polysize compilation function allowing us to check in poly-
time whether a given propositional CNF entails any propositional clause. Since
this is impossible unless the polynomial hierarchy collapses at the second level
[Lemma 4.3.10], we get that our hypothesis was false modulo the collapse of PH.

We also include here the proof of the satisfaction of CE by FSD, which has
similar consequences on succinctness. We need to show support of the conjunction
with a term transformation and of the consistency checkinq query beforehand.
Lemma 7.5.7. FSD and FSDD satisfy ∧tC.

Proof. We can use Algorithm 4.6 [p. 124], adapted to SDs, to compute the con-
junction of an FSD with a term. The procedure is still polynomial, since each in-
tersection of labels is. Furthermore, it maintains exclusive decision: the added top
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nodes have only one outgoing edge each, and no value is added in the labels of
other edges.

Lemma 7.5.8. FSD satisfies MX.

Proof. We can use Algorithm 4.3 [p. 106], adapted to SDs. The only operation
made on labels is the selection of an arbitrary value in a label, so the fact that
labels are now tileable integer sets instead of real intervals does not change the
complexity.

Corollary 7.5.9. FSD, FSDD, OSD, OSDD, OSD<, and OSDD< satisfy MX and CO.

Proof. Since MX implies CO [Proposition 3.3.2], FSD satisfies CO. Thanks to
Proposition 1.2.18, all sublanguages of FSD satisfy MX and CO, hence the result.

Lemma 7.5.10. FSD satisfies CE.

Proof. Let γ be a clause. Checking whether φ |= γ is equivalent to checking
whether JφK ∧ ¬JγK is inconsistent.

Let us suppose that γ =
[
x1 ∈ A1

]
∨ · · · ∨

[
xk ∈ Ak

]
. Then the term δ =[

x1 ∈ Dom(x1) \ A1

]
∧ · · · ∧

[
xk ∈ Dom(xk) \ Ak

]
is equivalent to ¬JγK, and

can be obtained in polytime [Prop. 7.4.3]. Since FSD satisfies ∧tC [Lem. 7.5.7] and
CO [Cor. 7.5.9], checking whether JφK∧ JδK is consistent can be done in polytime;
hence FSD satisfies CE.

Corollary 7.5.11. FSDD, OSD, OSDD, OSD<, and OSDD< satisfy CE.

Proof. FSD satisfies CE, thanks to Lemma 7.5.10. Now, Proposition 1.2.18 im-
plies that all sublanguages of FSD satisfy CE, hence the result.

Negation of SDDs

Lemma 7.5.12. Algorithm 7.3 [p. 163] takes an SDDφ as input. It has the following
properties:

• it returns an SDD (that is, it maintains exclusive decision);

• the SDD it returns is equivalent to the negation of JφK;

• the size of the SDD it returns is linear in ∥φ∥;

• it runs in time polynomial in ∥φ∥;

• it preserves ordering.

Proof. Let φ be an SDD. We denote as compl(φ) the SD returned by the applica-
tion of Algorithm 7.3 to φ.
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• Exclusive decision: compl(φ) is obviously exclusive, as we do not add
nodes, and only add edges that are disjoint with the other edges coming out
of their respective source node.

• Negation: We prove this by induction on the number of nodes of φ. For
n ∈ N, let P(n) be the following proposition: “For any SDD φ containing n
nodes, Jcompl(φ)K ≡ ¬JφK”. Obviously enough, thanks to lines 1–4, P(n)
holds for n ⩽ 1. Let n ⩾ 2, and suppose that P(k) is true for all k < n.

We consider an SDD φ containing n nodes. Let us denote by R the root of
φ, and Var(R) = x. We prove that Jcompl(φ)K ≡ ¬JφK.

(⇒) Let #—y ∈ Mod(φ); we show that #—y /∈ Mod(complφ). There must exist
an edge E ∈ Out(R) such that #—y |x ∈ Lbl(E). Now, we can meet two
cases: either R has a corresponding node in compl(φ), or it has not. In
the latter case, compl(φ) is the empty SD by construction (line 23), so
it has no model. In the former case, letR′ be the corresponding node in
question. If edge E has no corresponding edge E′ among the outgoing
edges of R′, then clearly, #—y cannot be a model of compl(φ), since (i)
compl(φ) is exclusive, (ii) by construction, #—y |x /∈ Lbl(Ecompl), and (iii)
no other edge is created. If there is an E′, then let φD be the subgraph
rooted at D = Dest(E).
By construction, the subgraph compl(φ)D′ rooted at the destination
node D′ of E′ is compl(φD). Our induction hypothesis allows us to
infer that compl(φ)D′ ≡ ¬JφDK; now since φ is exclusive, the path
compatible with #—y is unique, so #—y is a model of φD, therefore it is not
a model of compl(φ)D′ . All in all, no path in compl(φ) is compatible
with #—y , therefore #—y /∈ Mod(compl(φ)).

(⇐) Let #—y ∈ Mod(compl(φ)); we show that #—y /∈ Mod(φ). Node R′ cor-
responding toR must exist (otherwise compl(φ) would be empty), and
there must exist an edge E′ ∈ Out(R′) such that #—y |x ∈ Lbl(E′). If E′

is the special edge Ecompl, then by construction, all edges E ∈ Out(R)
verify #—y |x /∈ Lbl(E), hence #—y cannot be a model of φ. Otherwise, E′

corresponds to an edge E ∈ Out(R), with #—y |x ∈ Lbl(E).
Let us denote D = Dest(E) and D′ = Dest(E′); by construction, the
subgraph compl(φ)D′ rooted at D′ is compl(φD), with φD the sub-
graph rooted at D. Using our induction hypothesis, compl(φ)D′ ≡
¬JφDK. Now, since compl(φ) is exclusive, the path compatible with
#—y is unique, and therefore #—y ∈ Mod(compl(φ)D′). Consequently,
#—y /∈ Mod(φD), and since φ is also exclusive, there can be no path in
φ compatible with #—y and leading to the sink: #—y /∈ Mod(φ).

In all cases, #—y ∈ Mod(φ) ⇔ #—y /∈ Mod(compl(φ)) holds, which implies
that Jcompl(φ)K ≡ ¬JφK. Since both the basis and the inductive step are
proven, it shows by induction that P(n) holds for all n ∈ N.
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• Space complexity: For a given node N in φ, let us define its size ∥N∥ as
the sum of the sizes of its outgoing edges: ∥N∥ =

∑
E∈Out(N)∥Lbl(E)∥. In

the worst case (when there is, in the complement, an interval between each
couple of intervals from the outgoing edges of N ), ∥U∥ = 1 + ∥N∥. So the
size ofEcompl forN ′ is at most 1+∥N∥. In the worst case, there is anEcompl
edge for each node of compl(φ); the total size of these added edges is thus
bounded by

∑
N∈Nφ

1 +
∑

E∈Out(N)

∥Lbl(E)∥

 = |Nφ|+
∑
E∈Eφ

∥Lbl(E)∥,

which is itself bounded by 2∥φ∥. Hence the size of compl(φ) is always linear
in ∥φ∥.

• Time complexity: Each node is encountered once. To compute U , the hard-
est step is the sorting of the bounds of intervals labeling edges, hence a com-
plexity in O(n log(n)) for each node. The whole algorithm is thus polytime.

• Ordering: If φ is ordered with respect to <, then compl(φ) also is, since no
node is added and node labels are not modified.

Proof of Proposition 7.4.7 [p. 162]. The fact that SDD, OSDD, and OSDD< satisfy
¬C is a direct consequence of Lemma 7.5.12.

Conditioning

One of the succinctness proofs relies on conditioning being polynomial, so let us
prove this here.

Lemma 7.5.13. It is possible to adapt Algorithm 4.2 [p. 103] for it to take an SD φ
as input, rather than an IA. It then has the following properties:

• the SD it returns is a representation of the conditioning of φ by #—x ;

• it is linear in ∥φ∥;

• it preserves exclusive decision;

• it preserves focusingness;

• it preserves ordering.

Proof. Let φ be an SD, Y ⊆ IZ a set of integer variables, and #—y a Y -assignment;
we denote by φ| #—y the SD obtained by applying the modified Algorithm 4.2.

• Conditioning: By definition of the conditioning, #—z ∈ Dom(Scope(φ) \ Y )
is a model of JφK| #—y if and only if #—y . #—z is a model of φ.
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Suppose that #—y . #—z is a model of φ. Then there is in φ a path p compatible
with #—z . #—y . By construction, a copy p′ of p exists inφ| #—y , and #—z is compatible
with p′: #—z is a model of φ| #—y .

Suppose that #—y . #—z is a not model of φ: any path p in φ contains an edge E
such that ( #—y . #—z )|Var(E) /∈ Lbl(E). Recall that the paths in φ| #—y are the same
as those inφ, and let p′ be the one corresponding to p. If Var(E) ∈ Y , the fact
that ( #—y . #—z )|Var(E) /∈ Lbl(E) has led the algorithm to label the correspond-
ing edge in φ| #—y by ∅. Consequently, #—z cannot be compatible with this path.
If Var(E) /∈ Y , ( #—y . #—z )|Var(E) /∈ Lbl(E) means that #—z |Var(E) /∈ Lbl(E):
because such edges remain unchanged in φ| #—y , #—z cannot be compatible with
p′. Therefore #—z is not compatible with any path in φ| #—y , so #—z is not a model
of φ| #—y .

Hence Jφ| #—y K = JφK| #—y .

• Linearity: It is trivial, since each node and each edge is scanned at most
once.

• Exclusive decision: Supposing that φ satisfies exclusive decision, we show
that φ| #—y also does. Let us consider a node N in φ, and denote by N| #—y its
corresponding node in φ| #—y . If the two nodes are the same, N| #—y is obviously
exclusive. Suppose it has been modified: it is now labeled by ⊻. Since the
outgoing edges of N are labeled by disjoint sets, at most one of them can
include the value #—y (Var(N)). Consequently, at most one of N| #—y ’s outgoing
edges can be labeled by a non-empty set. Thus, all nodes of φ| #—y , including
⊻-nodes, are exclusive: the algorithm maintains exclusive decision.

• Focusingness: Supposing that φ is an FSD, we show that φ| #—y is also focus-
ing. The only edges that are modified by the algorithm are those that, in φ,
are associated with a variable from Y . In φ| #—y , they are all associated with ⊻:
they hence do not compromise focusingness. As for the other edges in φ| #—y ,
since they all remain unchanged, they are still focusing.

Thus, clearly enough, φ| #—y is focusing with respect to all variables in its scope
Scope(φ) \ Y ; hence it is focusing, by definition.

• Ordering: Supposing that φ is an OSD<, it is trivial that φ| #—y is also ordered
by <, since the order of the variables is not modified (no node is added or
moved, and ⊻-nodes do not interfere in the ordering).

Corollary 7.5.14. All the fragments of SD we defined (SD, SDD, FSD, FSDD, OSD,
OSDD, OSD<, OSDD<) satisfy CD.

More Lemmas

The following lemmas are useful in a few proofs.
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Lemma 7.5.15. The only reduced SDs φ such that Scope(φ) = ∅ are the empty and
the sink-only SDs.

Proof. The proof is the same as for IAs [see proof of Prop. 4.1.16, p. 113]: if
Scope(φ) is empty, there are only ⊻-nodes in φ, and they are removed by reduction.

Lemma 7.5.16. Let L be any of the sublanguages of SDD we defined; LSBB ⩽p LB
holds.

Proof. Replacing each edge label by its intersection with B is easy and does not
change the interpretation of the SDD. Then, a simple reduction operation removes
all edges with an empty label (they are dead) or with a non-singleton label (their
parent node is undecisive, given that it cannot have any other outgoing edge since
the SDD is exclusive). Thus we obtain in polytime an SDDSBB -representation. More-
over, the procedure maintains focusingness and ordering, hence the result.

7.5.5 Succinctness
Lemma 7.5.17. Let < be a total strict order on I; it holds that OSD< ⩽̸s OSDD.

Proof. LetX be a set of 2n Boolean variables, and let<b be a total strict order on
X . We are going to show that there exists a family Γn of Boolean functions over
X , and a total strict order <a on X , such that

• Γn has OSDD<a-representations of size polynomial in n;

• all OSD<b-representations of Γn are of size exponential in n.

Let us consider that X is partitioned into two sets, Y = {y1, . . . , yn} and Z =
{z1, . . . , zn}, such that the total strict order <b on X verifies

y1 <
b y2 <

b . . . <b yn <b z1 <
b z2 <

b . . . <b zn.

Let Γn be the Boolean function
∧n
i=1

[
yi = zi

]
. We consider the total strict order

<a on X , defined as

y1 <
a z1 <a y2 <

a z2 <a . . . <a yn <
a zn.

Γn has an OSDD<a-representation the size of which is polynomial in n: each
constraint xi = yi can be represented as an OSDD with only 3 nodes and 4 edges,
and since they do not share variables, they can be combined into a simple read-once
and ordered SD. We denote the resulting OSDD<a-representation as φan.

Now, we show that the size of any of the OSD<b-representations of Γn is expo-
nential in n. Let φbn be a (reduced) OSD<b representation of Γn. Consider an edge
E in φbn, representing the assignment of some variable yi (that is, an edge in the
first half of the graph). We denote as ω the label of E, as N its source node, and as
N ′ its destination node.
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Let us consider a path p from the root the sink of φbn including E. On this path,
the value of zi must be ω. Therefore, a path p′ obtained from p by replacing E by
another edge between N and N ′ labeled differently cannot belong to φbn.

For the same reason, any two edges entering a Y -node must be labeled with the
same value, and any two paths from the root to N ′ are either completely disjoint
or represent the same assignment of y1, . . . , yi. Each of the possible assignments
of variables from Y is thus represented by (at least) one path pointing to a distinct
z1-node. Since there are 2n assignments of variables from Y , there are at least 2n

nodes labeled z1. Hence ∥φbn∥ ⩾ 2n: all OSD<b-representations of Γn are of size
exponential in n.

All in all, for any total strict order < on I, there exists a family Γn of Boolean
functions that have polynomial OSDD-representations but no polynomial represen-
tation in OSD<: OSD< ⩽̸s OSDD.

Corollary 7.5.18. Let < be a total strict order on I. For all languages L among SD,
SDD, FSD, FSDD, OSD, and OSDD, it holds that OSD< ⩽̸s L and OSDD< ⩽̸s L.

Proof. This comes from the fact that OSDD is a sublanguage of all languages L
[Prop. 7.2.2]. If there existed L such that OSD< ⩽s L, we could infer OSD< ⩽s

L ⩽s OSDD, and thus OSD< ⩽s OSDD, that we proved false. The second result is in
turn a corollary of the first one, since OSDD< ⊆ OSD< [Prop. 7.2.2].

Lemma 7.5.19. Let us consider an integer n ⩾ 2, and X = {y, x1, . . . , xn} a set of
n+ 1 variables of domain [1, . . . , n].

There exists a family Σn of Boolean functions over X , such that:

• Σn has an FSDD-representation of size polynomial in n;

• for all total strict order < on X ending with y, all OSDD<-representations of
Σn are of size exponential in n.

Proof. Let Σn be the Boolean function
∧n
i=1

[
y ̸= xi

]
. Building an FSDD rep-

resenting Σn is easy: the root node is an y-node, with n outgoing edges, each one
labeled with a different value from [1, . . . , n]. The k-labeled edge points to a sub-
graph φk, that represents the Boolean function

∧n
i=1[xi ̸= k]. This function is

equivalent to
n∧
i=1

[
xi ∈ [1, . . . , k − 1] ∪ [k + 1, . . . , n]

]
,

which is a term, representable as a chain of nodes, the order not being important.
This automaton is clearly an FSDD (it is indeed read-once), and its size is bounded
by n · (1 + 2n); it is thus polynomial in n.

Now, let < be a total strict order on X that ends with y. Let us consider an
OSDD<-representation ψ of Σn. In all paths of ψ, the last node is labeled y (there
cannot be a path not mentioning y). We show that there must be at least 2n − 2
nodes labeled y.
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Let S be a strict, nonempty subset of [1, . . . , n]. Let #—xS be an assignment of
the variables from X \ {y}, such that no variable is assigned to a value outside of
S, and each value in S is assigned to at least one variable. Clearly enough, for any
{y}-assignment #—y such that #—y /∈ S, #—xS .

#—y is a model of Σn.
This means that there exists a least one path p from the root to the sink of ψ,

such that p is compatible with #—xS . We show that this path is unique up to the last
edge (the one pertaining to y). Let p′ be a path compatible with #—xS , such that p and
p′ are identical up to an x-node N . Since ψ satisfies exclusive decision, the edges
going out of N have disjoint labels. So if one of these edges, E, belongs to p, the
others cannot be compatible with #—xS . Hence E belongs to p and p′. By induction,
p and p′ are identical up to the first y-node (recall that y /∈ Scope( #—xS)).

Thus, all paths compatible with #—xS go through a same y-node, that we call N .
Thus, the edges going out of N must cover all values of y that are consistent with
#—xS : if such a value ω misses, there can be no path compatible with #—xS .

#—y with
#—y |y = ω, so #—xS .

#—y is not a model of ψ, which is absurd. Hence the union of the
labels of all edges going out of N must be exactly [1, . . . , n] \ S.

This reasoning is true for any of the 2n− 2 possible sets S: we need a different
y-node for each of these sets. Consequently, we need at least 2n − 2 different y-
nodes. Hence ∥ψ∥ ⩾ 2n−2: any OSDD<-representation ofΣn is of size exponential
in n.

Lemma 7.5.20. OSDD ⩽̸s FSDD holds.

Proof. Let n ∈ [2, . . . ,∞]. Let Z be a set of n+ 1 variables {z0, z1, . . . , zn} of
domain [1, . . . , n]. For each k ∈ [1, . . . , n], we denote as Σkn, the Boolean function
defined in Lemma 7.5.19 with zk playing the role of y and the other variables from
Z playing the role of the xi. For all k, let φk be an FSDD-representation of Σkn such
that ∥φk∥ is polynomial in n (we know there exists one, thanks to the lemma).

Let t be another integer variable of domain [1, . . . , n]. We consider the Boolean
function τn defined on Z ∪ {t} by the following formula:

τn ≡
n∨
k=1

([
t = k

]
∧ Σkn

)
.

τn has an FSDD-representation Φ of size polynomial in n. We just have to fuse
the sinks of the φk, and add a root node, labeled t, with n outgoing edges, each
one labeled with a different k ∈ [1, . . . , n] and pointing to the root of φk. This
automaton Φ clearly represents τn. Furthermore, Φ is an FSDD: each φk is an
FSDD, t is not mentioned in any of the φk and its outgoing edges are disjoint, and
no ⊻-node is added. Last, ∥Φ∥ is polynomial in n: it consists of a root node with n
outgoing edges of size 1, and of n subgraphs of size polynomial in n.

Now, we prove that τn has only exponential OSDD-representations. Let us sup-
pose that there exists a total strict order< ofZ∪{t}, and an OSDD<-representationψ
of τn such that ∥ψ∥ is polynomial in n. Let zk be the greatestZ variable in<. Since
OSDD< supports CD [Cor. 7.5.14], we can obtain a polysize OSDD<-representation
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ψk of τn|t=k, which is equivalent toΣkn. Thus there exists a total strict order< ofZ,
ending with zk, for which there exists an OSDD<-representation of Σkn of size poly-
nomial in n. However, Lemma 7.5.19 states that it is impossible. Hence, there can
be no total strict order< ofZ∪{t} such that τn has an OSDD<-representation of size
polynomial in n. This proves that τn has no polynomial OSDD-representation.

Corollary 7.5.21. It holds that

OSDD ⩽̸s

SD,
SDD,
FSD.

Proof. This comes from the fact that FSDD is a sublanguage of SD, SDD, and FSD
[Prop. 7.2.2].

Lemma 7.5.22. Let < be a total strict order on I; it holds that OSDD ⩽̸s OSD<.

Proof. Assuming OSDD ⩽s OSD<, we can infer OSDD ⩽s DNFSBB [direct conse-
quence of 7.4.4]. Then OSDDB ⩽s DNFSBB , thanks to Proposition 1.2.16. Because
of Lemma 7.5.16, we get OSDDSBB ⩽p OSDDB, and finally OSDDSBB ⩽s DNFSBB .

Now, OBDDSBB ⩽s OSDDSBB [Prop. 7.2.8]. Hence OBDDSBB ⩽s OSDDSBB ⩽s

DNFSBB , and thus OBDDSBB ⩽s DNFSBB —which is false [Th. 1.4.17]. This proves by
contradiction that OSDD ⩽̸s OSD<.

Corollary 7.5.23. Let < be a total strict order on I. It holds that OSDD ⩽̸s OSD and
that OSDD< ⩽̸s OSD<.

Proof. It respectively comes from the facts that OSD< ⊆ OSD and that OSDD< ⊆
OSDD [Proposition 7.2.2].

Lemma 7.5.24. OSD ⩽̸s SDD holds.

Proof. Let n ∈ N∗. Let Zn be a set of n variables {z1, . . . , zn} of domain
[1, . . . , n]. Let Σn be the Boolean function defined as Σn ≡ alldiff(z1, . . . , zn),
or equivalently:

Σn ≡
n∧
i=1

i−1∧
j=1

[
zi ̸= zj

]
.

There exists an SDD of size polynomial in n representing Σn. Indeed, each
constraint

[
zi ̸= zj

]
can be represented as an SDD of n(n − 1) singleton-labeled

edges (n edges for zi, and for each one, a zj-node with n−1 outgoing edges). They
can be combined into a polysize SDD, since SDD satisfies ∧C [Prop. 7.4.2].

Now, we prove that all OSDs representing Σn are of size exponential in n. Let
φ be an OSD-representation of Σn; we consider, without loss of generality, that its
variable order < verifies z1 < · · · < zn.
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Let i ∈ [1, . . . , n]; consider two distinct subsets S and S′ of [1, . . . , n] such that
|S| = |S′| = i. Let ω ∈ [1, . . . , n] such that ω ∈ S and ω /∈ S′. Let #—z S and #—z S′

be two {z1, . . . , zi}-assignments that cover all values in S and S′, respectively. We
consider two paths pS and pS′ from the root to the sink of φ, compatible with #—z S
and #—z S′ , respectively. Suppose they go through a same zi-node N ; pS assigns ω
to some variable before encountering N , and pS′ assigns ω to some variable after
having encounteredN . Then, the path obtained by joining the first part of pS (from
the root to N ) and the second part of pS′ (from N to the sink) is a consistent path
assigning ω to two different variables. Since such a path violates the “alldifferent”
constraint, it is impossible, so pS and pS′ must go through two different zi-nodes.

Hence, there are at least one zi-node for each S ⊆ [1, . . . , n] of cardinal i; since
there are

(
n
i

)
such subsets, there are at least

(
n
i

)
zi-nodes. The number of nodes in

φ is thus greater than
∑n

i=1

(
n
i

)
= 2n.

All in all, family Σn has polynomial SDD-representations, but only exponential
OSD-representations, which proves OSD ⩽̸s SDD.

Corollary 7.5.25. OSD ⩽̸s SD holds.

Proof. Straight from the fact that SDD is a sublanguage of SD [Prop. 7.2.2].

Lemma 7.5.26. Let < be a total strict order on I. It holds that FSDD ⩽̸s OSD<,
unless PH collapses at the second level.

Proof. We know that FSDD supports IM [Lemma 7.5.5]. Thanks to Lemma 7.5.6,
we get that FSDD cannot be at least as succinct as DNFSBB unless PH collapses at the
second level. However, OSD< ⩽s DNFSBB [direct consequence of 7.4.4]. Therefore,
FSDD ⩽̸s OSD< holds unless PH collapses.

Corollary 7.5.27. The following propositions hold, unless PH collapses at the sec-
ond level:

FSDD ⩽̸s

OSD,
FSD,
SD.

Proof. This is inferred from the fact that OSD< is a sublanguage of OSD, FSD, and
SD [Proposition 7.2.2].

Lemma 7.5.28. FSD ⩽̸s SDD holds, unless PH collapses at the second level.

Proof. We know that FSD supports CE [Lemma 7.5.10]. Thanks to Lemma 4.3.11,
we get that FSD cannot be at least as succinct as CNFSBB unless PH collapses at the
second level.

Now, we also know that SDD ⩽s CNFSBB holds [direct consequence of 7.4.4].
Hence, if FSD ⩽s SDD held, it would be true that FSD ⩽s CNFSBB ; yet we just proved
that it was impossible unless PH collapses, so we get the result.
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L SD SDD FSD FSDD
SD ⩽s ⩽s [Prop. 7.2.2] ⩽s [Prop. 7.2.2] ⩽s [Prop. 7.2.2]

SDD ? ⩽s ? ⩽s [Prop. 7.2.2]

FSD ⩽̸s
∗ [Cor. 7.5.29] ⩽̸s

∗ [Lem. 7.5.28] ⩽s ⩽s [Prop. 7.2.2]

FSDD ⩽̸s
∗ [Cor. 7.5.27] ⩽̸s

∗ [Cor. 7.5.29] ⩽̸s
∗ [Cor. 7.5.27] ⩽s

OSD ⩽̸s [Cor. 7.5.25] ⩽̸s [Lem. 7.5.24] ? ?

OSDD ⩽̸s [Cor. 7.5.21] ⩽̸s [Cor. 7.5.21] ⩽̸s [Cor. 7.5.21] ⩽̸s [Lem. 7.5.20]

OSD< ⩽̸s [Cor. 7.5.18] ⩽̸s [Cor. 7.5.18] ⩽̸s [Cor. 7.5.18] ⩽̸s [Cor. 7.5.18]

OSDD< ⩽̸s [Cor. 7.5.18] ⩽̸s [Cor. 7.5.18] ⩽̸s [Cor. 7.5.18] ⩽̸s [Cor. 7.5.18]

L OSD OSDD OSD< OSDD<
SD ⩽s [Prop. 7.2.2] ⩽s [Prop. 7.2.2] ⩽s [Prop. 7.2.2] ⩽s [Prop. 7.2.2]

SDD ? ⩽s [Prop. 7.2.2] ? ⩽s [Prop. 7.2.2]

FSD ⩽s [Prop. 7.2.2] ⩽s [Prop. 7.2.2] ⩽s [Prop. 7.2.2] ⩽s [Prop. 7.2.2]

FSDD ⩽̸s
∗ [Cor. 7.5.27] ⩽s [Prop. 7.2.2] ⩽̸s

∗ [Lem. 7.5.26] ⩽s [Prop. 7.2.2]

OSD ⩽s ⩽s [Prop. 7.2.2] ⩽s [Prop. 7.2.2] ⩽s [Prop. 7.2.2]

OSDD ⩽̸s [Cor. 7.5.23] ⩽s ⩽̸s [Lem. 7.5.22] ⩽s [Prop. 7.2.2]

OSD< ⩽̸s [Cor. 7.5.18] ⩽̸s [Lem. 7.5.17] ⩽s ⩽s [Prop. 7.2.2]

OSDD< ⩽̸s [Cor. 7.5.18] ⩽̸s [Cor. 7.5.18] ⩽̸s [Cor. 7.5.23] ⩽s

Table 7.4: Results about succinctness, with indication of the proposition corre-
sponding to each result. A star (∗) indicates a result that holds unless the polynomial
hierarchy PH collapses.

Corollary 7.5.29. Unless PH collapses at the second level, it holds that FSDD ⩽̸s SDD
and FSD ⩽̸s SD.

Proof. It comes from the facts that FSDD is a sublanguage of FSD, and that SDD is a
sublanguage of SD, respectively [Prop. 7.2.2]. (We already proved that FSDD ⩽̸s SD
in Corollary 7.5.27.)

Proof of Theorem 7.4.8 [p. 162]. All results of this theorem come from proposi-
tion, lemmas, and corollaries. Table 7.4 associates with each claim its correspond-
ing proposition.

7.5.6 Queries and Transformations

Various Queries
In this section, we prove most of the remaining results about queries. Results about
SE and EQ are proven in Section 7.5.6.5 [p. 191].
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Lemma 7.5.30. SD satisfies MC.

Proof. First, condition the SD by the X-assignment that is to be checked, say #—x .
The resulting SD contains only ⊻-nodes, so the reduction procedure removes them
all [Lemma 7.5.15]. We get either the empty SD (then #—x is not a model) or the
sink-only SD (then #—x is a model). Since conditioning [Cor. 7.5.14] and reduction
[Prop. 7.2.3] are polytime, SD satisfies MC.

Corollary 7.5.31. SDD, FSD, FSDD, OSD, OSD<, OSDD, and OSDD< satisfy MC.

Proof. All of them are fragments of SD, and as such, satisfy the same set of queries
[Prop. 1.2.18].

Lemma 7.5.32. SD and SDD do not satisfy CO, VA, CE, IM, EQ, SE, MX, CX, CT, or
ME, unless P = NP.

Proof. We know that BDDSBB does not satisfy CO, VA, CE, IM, EQ, SE, CT, or
ME, unless P = NP [Th. 1.4.18]. Since MX and CX imply CO [Proposition 3.3.2],
BDDSBB does not satisfy any of the queries mentioned in the lemma unless P = NP.

Now, BDDSBB = SDDSBB [Proposition 7.2.8], so BDDSBB ⊆ SDD, and BDDSBB ⊆
SD, so thanks to Proposition 1.2.18, we know that SD and SDD cannot support any
query that BDDSBB does not support. As a result, we get the lemma.

Lemma 7.5.33. OSD< does not satisfy VA, IM, EQ, SE, or CT, unless P = NP.

Proof. This is a direct consequence of Proposition 7.4.4, Theorem 1.4.18, and
Proposition 1.2.18: DNFSBB does not satisfy these queries unless P = NP, and
OSD< ⩽p DNFSBB .

Corollary 7.5.34. OSD and FSD do not satisfy VA, IM, EQ, SE, or CT, unless P = NP.

Proof. We apply once again the property of sublanguages and queries provided
in Proposition 1.2.18, given that OSD< ⊆ OSD ⊆ FSD [Prop. 7.2.2].

Lemma 7.5.35. OSDD and OSDD< satisfy CT.

Proof. Since OSDDs are read-once and exclusive, given an OSDD φ of variable
order <, we simply have to associate with the sink the number nSink(φ) = 1, then
traverse the graph from the sink to the root, associating with each edge E the num-
ber (possibly infinite)

nE = |Lbl(E)| ·
∏

xs<x<xd

|Dom(x)|,

where xs = Var(Src(E)) and xd = Var(Dest(E)), and with each internal node N
the number

nN =
∑

E∈Out(N)

nE .
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The number of models is then nRoot(φ). This process being polynomial in ∥φ∥,
OSDD and OSDD< satisfy CT.

Lemma 7.5.36. Let < be a total strict order on I; OSDD and OSDD< satisfy VA and
IM.

Proof. FSDD satisfies VA [Prop. 7.4.5] and IM [Lem. 7.5.5]. Now, applying Propo-
sition 1.2.18, all sublanguages of FSDD must satisfy VA and IM, and we know that
OSDD< ⊆ OSDD ⊆ FSDD [Prop. 7.2.2].

Lemma 7.5.37. FSD satisfies CX.

Proof. We use Algorithm 4.4 [p. 107], adapted to SDs. Instead of making unions
of intervals, it now makes unions of unions of intervals; the overall complexity is
the same (recall that the size of the SD depends on the number of intervals in its
labels).

Corollary 7.5.38. FSDD, OSD, OSDD, OSD<, and OSDD< satisfy CX.

Proof. Thanks to Proposition 1.2.18, all sublanguages of FSD satisfy CX, hence
the result.

Lemma 7.5.39. Let φ be an SD, and x ∈ Scope(φ). We can obtain in polytime a
mesh of x in φ.

Proof. The proof is exactly the same as for IAs [Lemma 4.4.4]. We just have
to gather the bounds of all intervals in φ pertaining to x, and create a partition of
Dom(x) based on this set of bounds.

The fact that the labels are union of intervals does not change the properties of
meshes. In particular, it still holds that for any two values m and m′ in a given
element of a mesh of x in φ,

JφK|x=m = JφK|x=m′ ,

as stated in Lemma 4.4.5.
Lemma 7.5.40. FSD satisfies ME.

Proof. We use the same mechanism as for ME on FIAs. We have to use a mesh,
because domain cardinals are not taken into account in the size of an SD: integer
variables have an integer interval domain, and these structures have a characteristic
size of 1, whatever their cardinal may be. Hence, we cannot branch on all values
of each variable—the tree would be potentially exponential in the size of the SD.

Corollary 7.5.41. FSDD, OSD, OSDD, OSD<, and OSDD< satisfy ME.

Proof. Thanks to Proposition 1.2.18, all sublanguages of FSD satisfy ME, hence
the result.
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Negation

Lemma 7.5.42. Let L be a representation language; if L ⩽p DNFSBB and L satisfies
CO, L cannot satisfy ¬C unless P = NP.

Proof. If L satisfied ¬C, CNFSBB would satisfy CO. Indeed, by negating a Boolean
CNF, one obtains a DNF, which is, by hypothesis, polynomially translatable into
an L-representation. Computing its negation, we would obtain an L-representation
equivalent to the original CNF—and we can decide in polytime whether it is con-
sistent, since by hypothesis L satisfies CO. Hence, since CNFSBB does not satisfy CO
unless P = NP [Th. 1.4.18], L does not satisfy ¬C unless P = NP.

Corollary 7.5.43. OSD<, OSD, and FSD do not satisfy ¬C unless P = NP.

Proof. We know that OSD< ⩽p DNFSBB [Prop. 7.4.4], OSD< ⊆ OSD ⊆ FSD
[Prop. 7.2.2], and these three languages satisfy CO [Cor. 7.5.9].

Conjunction
Lemma 7.5.44. OSDD and OSDD< do not satisfy ∧C.

Proof. If OSDD satisfied ∧C, we could transform in polytime any CNF into an
OSDD, since clauses can be turned into OSDDs in polytime [Prop. 7.4.3]. Thus,
we would have OSDD ⩽p CNFTZI . Using Proposition 1.2.16, this would lead to
OSDDB ⩽s CNFSBB . Using Lemma 7.5.16, OSDDSBB ⩽p OSDDB. All in all, we get
that if OSDD satisfied ∧C, this would imply that OSDDSBB ⩽p CNFSBB . Now, since
OSDDSBB ∼p OBDDSBB , this would imply that OBDDSBB ⩽p CNFSBB ; yet it is not true
[Th. 1.4.18].

The same proof can be used for OSDD<.

Lemma 7.5.45. FSD, FSDD, OSD, and OSDD do not satisfy ∧BC unless P = NP.

Proof. OBDDSBB is polynomially translatable into any of these languages [conse-
quence of Prop 7.2.8], that all satisfy CO [Cor. 7.5.9]; because of Lemma 4.4.3,
they cannot satisfy ∧BC unless P = NP.

Corollary 7.5.46. FSD, FSDD, and OSD do not satisfy ∧C unless P = NP. (We already
have a stronger result on OSDD, see Lemma 7.5.44.)

Lemma 7.5.47. OSD< does not satisfy ∧C unless P = NP.

Proof. If OSD< satisfied ∧C, we could transform in polytime any Boolean CNF
into an OSD<-representation, since clauses can be turned into OSDs in polytime
[Prop. 7.4.3]. Yet, OSD< supports CO [Cor. 7.5.9], and CNFSBB does not support CO
unless P = NP [Th. 1.4.18]. Hence, OSD< cannot satisfy ∧C unless P = NP.

Lemma 7.5.48. OSD< and OSDD< satisfy ∧BC.
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Proof. We can use Algorithm 7.6, adapted from the classical OBDD one [Bry86].
It applies on non-empty OSDs of a same variable order (if one of the OSDs is
empty, it is trivial to compute the conjunction). A cache is maintained to avoid
computing twice the same couple of nodes, thus conjunct_step is not called more
than |Nφ1 | · |Nφ2 | times.

Before conjunct_step is called on the roots of φ1 and φ2, the cache is initial-
ized, and a mesh of both φ1 and φ2 is computed for each variable x ∈ Scope(φ1)∪
Scope(φ2): it is denoted as Mx = {Mx

1 , . . . ,M
x
n}. Each element Mx

i of Mx

is associated with an “index value” mi ∈ Mx
i . The set of index values for x is

denoted as Indexes(x).
For each execution of conjunct_step, if variables are different, each outgoing

edge of the top node is explored once, and if variables are equal, each index value
is treated once—and the number of index values is linear in ∥φ1∥+ ∥φ2∥.

Hence, the overall procedure is polynomial in ∥φ1∥ and ∥φ2∥. When both
φ1 and φ2 satisfy exclusive decision, the resulting SD ψ also satisfies exclusive
decision: the “new” nodes that are added when variables are equal (line 17) have
only exclusive outgoing edges (they are all labeled by different elements of the
same mesh).

Lemma 7.5.49. SD, SDD, OSD<, and OSDD< satisfy ∧tC.

Proof. This is trivial, since they all satisfy ∧BC [Prop. 7.4.2 and Lemma 7.5.48],
and translating a term into any of these languages is polynomial [Prop. 7.4.3].

Lemma 7.5.50. OSD and OSDD satisfy ∧tC.

Proof. Letφ be an OSD, and γ a term. Obviously, there exists a total strict order<
such that φ is an OSD<-representation. Since OSD< satisfies ∧tC [Lemma 7.5.49],
we can obtain in polytime an OSD representing the conjunction of JφK and JγK.
Hence, OSD satisfies ∧tC.

The proof is similar for OSDD since OSDD< also satisfies ∧tC.

Disjunction
Lemma 7.5.51. SDD satisfies ∨C and ∨BC.

Proof. This holds since SDD satisfies ∧C and ¬C. Indeed by De Morgan’s laws, to
obtain the disjunction of φ1, . . . , φn, we can compute the negation of each disjunct,
compute their conjunction, then compute the negation of the result. SDD satisfies
¬C [Prop. 7.4.7]: there exists a polynomial P such that ∀φi, ∥¬φi∥ ⩽ P (∥φi∥)
(denoting ¬φi the SDD representing ¬JφiK). SDD satisfies ∧C [Prop. 7.4.2]: there
exists a polynomial P ′ and an SDD-representation ψ of

∧n
i=1J¬φiK such that ∥ψ∥ ⩽

P ′(
∑n

i=1 P (∥φi∥)). The size of the disjunction is thus bounded by the number
P (P ′(

∑n
i=1 P (∥φi∥))), which is polynomial in each of the ∥φi∥.
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Algorithm 7.6 conjunct_step(φ1, φ2): when given two (nonempty) OSD<-
representations φ1 and φ2, returns an OSD<-representation of Jφ1K ∧ Jφ2K.

1: let N1 := Root(φ1)
2: let N2 := Root(φ2)
3: if the cache contains the key ⟨N1, N2⟩ then
4: return the OSD corresponding to this key in the cache
5: if Out(N1) = ∅ then // the sink of φ1 is reached
6: let ψ := φ2

7: else if Out(N2) = ∅ then // the sink of φ2 is reached
8: let ψ := φ1

9: else if Var(N1) ̸= Var(N2) then
10: Ni = Argmin<(Var(N1),Var(N2)),
11: Nj = Argmax<(Var(N1),Var(N2))
12: create a node N ′i labeled Var(Ni)
13: for each E ∈ Out(Ni) do
14: let ψE := conjunct_step(Dest(E), Nj)
15: add an edge going out of N ′i , labeled Lbl(e) and pointing to the root

of ψE
16: let ψ be the OSD rooted at N ′i
17: else // Var(N1) = Var(N2)
18: let x := Var(N1)
19: create a node N ′ labeled by x
20: for eachmi ∈ Indexes(x), E1 ∈ Out(N1), E2 ∈ Out(N2) do
21: ifmi ∈ Lbl(E1) andmi ∈ Lbl(E2) then
22: let ψi := conjunct_step(Dest(E1),Dest(E2))
23: add an edge going out of N ′, labeled by Mx

i and pointing to the
root of ψi

24: let ψ be the OSD rooted at N ′

25: add ψ to the cache, at key ⟨N1, N2⟩
26: return ψ
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Lemma 7.5.52. OSDD and OSDD< do not satisfy ∨C.

Proof. Since OSDD ⩽p termTZI [Prop. 7.4.3], if OSDD satisfied ∨C, we could
transform in polytime any DNF into an OSDD, and in particular we would get
OSDDSBB ⩽p DNFSBB [Prop. 1.2.16 and Lemma 7.5.16]. Now, since OSDDSBB ∼p

OBDDSBB [Prop. 7.2.8], this would imply that OBDDSBB ⩽p DNFSBB ; yet it is not true
[Th. 1.4.18].

The same proof can be used for OSDD<.

Lemma 7.5.53. Let L be a Boolean representation language; if L ⩽p OBDDSBB and L
satisfies VA, it cannot satisfy ∨BC unless P = NP.

Proof. The proof is uses the same mechanism as the one of Lemma 4.4.3, and is
also adapted from Darwiche and Marquis [DM02]. Let φ1 and φ2 be two OBDDSBB -
representations (not necessarily of the same order); checking whether their con-
junction is consistent is equivalent to checking whether ¬Jφ1K ∨ ¬Jφ2K is valid.
OBDDSBB satisfies ¬C [Th. 1.4.18], so we can obtain in polytime two OBDDs repre-
senting ¬JφK1 and ¬JφK2, that we can translate in polytime into L-representations,
since L ⩽p OBDDSBB . If L satisfied ∨BC, we could then obtain in polytime an L-
representation of ¬Jφ1K∨¬Jφ2K, of which we could easily check the validity (since
L satisfies VA).

All in all, we would have a polytime algorithm deciding whether the conjunc-
tion of two OBDDs (the variable orderings being possibly different in each OBDD)
is consistent; yet, this problem is NP-complete, as shown by Meinel and Theobald
[MT98, Lemma 8.14]. Therefore L does not support ∨BC unless P = NP.

Corollary 7.5.54. FSDD and OSDD do not satisfy ∨BC unless P = NP. FSDD does not
satisfy ∨C unless P = NP.

Proof. FSDD ⩽p OSDD ⩽p OBDDSBB [Props 7.2.2 and 7.2.7], and both FSDD and
OSDD satisfy VA [Prop. 7.4.5 and Lemma 7.5.36], so they cannot satisfy ∨BC, and
thus ∨C, unless P = NP. (We already have a stronger result for ∨C on OSDD, see
Lemma 7.5.52.)

Lemma 7.5.55. Let < be a total strict order on I. OSDD< satisfies ∨BC.

Proof. Similarly to the proof of Lemma 7.5.51, this holds because OSDD< satisfies
both ∧BC and ¬C. Let f and g be two Boolean functions; by De Morgan laws,
f ∨ g ≡ ¬(¬f ∧ ¬g).

Let φ1 and φ2 be two OSDD<-representations. We can obtain an OSDD< repre-
senting Jφ1K∨Jφ2K by computing their negation, which is polynomial [Prop. 7.4.7],
then computing the conjunction of the two OSDD<-representations we obtain, which
is also polynomial [Lemma 7.5.48], then negating the result.
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Lemma 7.5.56. Let < be a total strict order on I. SD, SDD, FSD, OSD<, and OSDD<
satisfy ∨clC.

Proof. This is trivial, since clauses can be represented in any of these languages
in polytime [Prop. 7.4.3], and they all satisfy ∨BC [Prop. 7.4.1 and Lemmas 7.5.51
and 7.5.55].

Corollary 7.5.57. OSD and OSDD satisfy ∨clC.

Proof. Let φ be an OSD. There exists a total strict order < on I such that φ
is ordered by <, therefore φ is an OSD<-representation. OSD< satisfies ∨clC, so
obtaining the disjunction of φ with a clause γ can be done in polytime. Hence OSD
satisfies ∨clC.

A similar reasoning shows that OSDD also satisfies ∨clC.

Sentential Entailment and Equivalence
Lemma 7.5.58. OSDD and FSDD do not satisfy SE unless P = NP.

Proof. We use once again the same mechanism as in the proof of Lemma 4.4.3.
Let φ1 and φ2 be two OBDDSBB -representations (not necessarily of the same order);
checking whether their conjunction is consistent is equivalent to checking whetherJφ1K does not entail ¬Jφ2K. Since OSDD ⩽p OBDDSBB [Prop. 7.2.7], and OSDD sat-
isfies ¬C [Prop. 7.4.7], if it satisfied SE we could check in polytime whether the
conjunction of two OBDDs (the variable orderings being possibly different in each
OBDD) is consistent; yet, this problem is NP-complete, as shown by Meinel and
Theobald [MT98, Lemma 8.14]. Hence OSDD does not support SE unless P = NP,
and neither does FSDD, by application of Proposition 1.2.18.

Lemma 7.5.59. Let < be a total strict order on I. OSDD< satisfies SE.

Proof. Let f and g be two Boolean functions. Checking whether f |= g is equiv-
alent to checking whether ¬f ∨ g is valid.

Now, OSDD< satisfies ¬C [Prop. 7.4.7] and ∨BC [Lemma 7.5.55], so given two
OSDD<-representations φ and ψ, we can build in polytime an OSDD representing
¬JφK ∨ JψK. Moreover, OSDD< satisfies VA [Lemma 7.5.36], so we can check in
polytime whether this construct is valid. Consequently, OSDD< satisfies SE.

Lemma 7.5.60. Let < be a total strict order on I. OSDD< satisfies EQ.

Proof. Checking whether φ ≡ ψ is equivalent to checking whether both φ |= ψ
andψ |= φ hold. Since OSDD< satisfies SE [Lemma 7.5.59], it also satisfies EQ.

Lemma 7.5.61. OSDD satisfies EQ.

Proof. The procedure described in Algorithm 7.7 is adapted from Meinel and
Theobald [MT98, Th. 8.11].

Before the procedure is called, a mesh of both Φ and Ψ is computed for each
variable x ∈ Scope(Φ)∪ Scope(Ψ): it is denoted as Mx = {Mx

1 , . . . ,M
x
n}. Each
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Algorithm 7.7 Given two OSDDs Φ and Ψ, checks whether Φ ≡ Ψ holds.
1: let L := {⟨Φ,Ψ⟩}
2: for each node N in Φ, ordered from the root to the sink, except the sink do
3: let φ be the subgraph rooted at N
4: let ψ be one of the SDs such that ⟨φ,ψ⟩ ∈ L
5: for each ψ′ such that ⟨φ,ψ′⟩ ∈ L do
6: if ψ′ ̸≡ ψ then
7: return false
8: remove ⟨φ,ψ′⟩ from L
9: let x := Var(N)

10: for eachmi ∈ Indexes(x) do
11: if there exists E ∈ Out(N) such that mi ∈ Lbl(E) then
12: let φE be the SD rooted at Dest(E)
13: else
14: let φE be the empty SD
15: add the couple ⟨φE , ψ|x=mi

⟩ to L
16: remove the couple ⟨φ,ψ⟩ from L
17: for each couples ⟨φ,ψ⟩ ∈ L do
18: if φ ̸≡ ψ then
19: return false
20: return true

elementMx
i of Mx is associated with an “index value”mi ∈Mx

i . The set of index
values for x is denoted as Indexes(x). We suppose that Φ and Ψ are reduced: since
they are exclusive, there remains no ⊻-node in both graphs.

The procedure is based on the following equation, holding for any variable
x ∈ Scope(Φ) ∪ Scope(Ψ):

Φ ≡ Ψ ⇐⇒ ∀ω ∈ Dom(x),Φ|x=ω ≡ Ψ|x=ω.

Using the usual properties of meshes, we can transform the quantification on do-
main values into a quantification on mesh indexes:

Φ ≡ Ψ ⇐⇒ ∀m ∈ Indexes(x),Φ|x=m ≡ Ψ|x=m. (7.1)

Now, the procedure keeps a list L of couples of subgraphs from Φ and Ψ re-
spectively. We show that this list has the following property:

Φ ≡ Ψ ⇐⇒ ∀⟨φ,ψ⟩ ∈ L,φ ≡ ψ. (7.2)

L is initialized with ⟨Φ,Ψ⟩, so this is trivially true at the beginning. On line 8,
we remove only redundant couples. On line 16, we have replaced the last couple
⟨φ,ψ⟩ by a set of couples according to the decomposition scheme using the mesh
(7.1). Hence, while the procedure runs, we know that Φ ≡ Ψ holds if and only if
∀⟨φ,ψ⟩ ∈ L,φ ≡ ψ, q.e.d. (7.2).
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We use this equivalence to show that the algorithm is sound and complete. On
line 6, we encounter two inconsistent couples: it is impossible that φ be equivalent
to both ψ and ψ′. Thus there exists a couple in L such that φ ̸≡ ψ, and hence
Φ ̸≡ Ψ. We can return false. At the end of the algorithm, we have tested the
equivalence of all couples in L (lines 17–19), we can thus return true.

Let us now show that the algorithm is polynomial. Each node of Φ is treated
once. For a given node, we add exactly n couples to L (line 15), with n being the
size of the mesh on x, which is bounded by 2(∥Φ∥ + ∥Ψ∥). We also remove one
couple (line 16). Hence L contains at most n · |NΦ| couples.

For each node, we make at most n · |NΦ| equivalence tests at line 6; equiva-
lence tests being on OSDDs of the same variable order, they can be done in polytime
[Lemma 7.5.60]. The traversal of the graph (lines 2–16) is thus polynomial.

Once we have traversed the entire Φ, we know by construction that the only
couples ⟨φ,ψ⟩ left in L are such that φ is either the sink-only or the empty SD, so
φ is an OSDD of the same variable order as Ψ: all the equivalence tests of line 18
(there can be at most n · |NΦ|) can be done in polytime.

Term Restriction and Quantification
Lemma 7.5.62. Algorithm 4.5 [p. 117] can be easily adapted to take as input an FSD
φ and a termTZI -representatio γ. It has then the following properties:

• it is polynomial in ∥φ∥ · ∥γ∥;

• it preserves focusingness;

• it preserves ordering.

Proof.

• Each edge in φ is processed once; for each one, every literal from γ is ex-
amined once. The intersection of two elements of TZ can be done in time
polynomial in their size (roughly speaking, it only requires an ordering of the
bounds).

• The procedure preserves focusingness as in the case of FIA: for each variable
x in Scope(γ), all x-nodes are replaced by ⊻-nodes, that are not required to
be focusing.

• It preserves ordering for the same reason: the order of the nodes is not mod-
ified. Some nodes are replaced by ⊻-nodes, but this does not interfere with
the ordering property.

Corollary 7.5.63. FSD, OSD, and OSD< satisfy TR, FO, and SFO.

Proof. FSD, OSD, and OSD< satisfy TR, as a consequence of Lemma 7.5.62. Since
forgetting a set of variables {x1, . . . , xk} boils down to computing the restriction
to the valid term

[
x1 ∈ Z

]
∧ · · · ∧

[
xk ∈ Z

]
, FSD, OSD, and OSD< satisfy FO, and

thus SFO.

193



Chapter 7 Set-labeled Diagrams Framework

Lemma 7.5.64. Let n ∈ N∗, φ1, . . . , φn be n SDs, and ψ = Join(φ1, . . . , φn) be
the result of the application of Algorithm 7.8 on the φi. The following properties
hold:

• Algorithm 7.8 runs in time linear in
∑n

i=1∥φi∥;

• if all φi are focusing, ψ is also focusing;

• if all φi are ordered by some total strict order <, ψ is also ordered by <;

• if all φi are exclusive, ψ is also exclusive;

• ∃x.JψK ≡ ∨n
i=1JφiK;

• ∀x.JψK ≡ ∧n
i=1JφiK.

Proof.

• Complexity: This is trivial, since the φi are just copied into ψ, and only n
edges of size 1 are added.

• Focusingness: x does not appear in any of the φi. Therefore if they are all
focusing, ψ also is.

• Ordering: Considering (without loss of generality) that x is the smallest
variable of ψ with respect to <, the result is obvious.

• Exclusive decision: The added root node is exclusive, so if all the φi satisfy
exclusive decision, ψ also does.

• Conjunction and disjunction: By construction, for all i ∈ [1, . . . , n], we
have JφiK ≡ Jψ|x=iK. Hence

∨n
i=1JψK|x=i ≡ ∨n

i=1JφiK and
∧n
i=1JψK|x=i ≡∧n

i=1JφiK. By Prop. 1.4.12, we get that ∃x.JψK ≡ ∨n
i=1JφiK, and ∀x.JψK ≡∧n

i=1JφiK.

Algorithm 7.8 Given n SDs φ1, . . . , φn, builds an SD Join(φ1, . . . , φn).
1: let x ∈ I with Dom(x) = [1, . . . , n], such that ∀φi, x /∈ Scope(φi)
2: fuse the sinks of all φi
3: create a root node N , labeled x
4: for i from 1 to n do
5: create an edge between N and Root(φi), labeled {i}

Lemma 7.5.65. OSDD and OSDD< do not satisfy SFO. FSDD does not satisfy SFO
unless P = NP.

Proof. Let L be a language among OSDD, OSDD<, and FSDD.
Let Σ be a DNFTZI -representation. Each of its terms can be transformed in an

L-representation φi in polytime [Prop. 7.4.3]. Let us apply Algorithm 7.8 on the φi.
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Thanks to Lemma 7.5.64, we know that we obtain in polytime an L-representation
ψ such that

∃x.JψK ≡ n∨
i=1

JφiK.

Suppose L satisfies SFO; then we can obtain an L-representation of
∨n
i=1JφiK, and

thus Σ, in polytime. All in all, this means that if L satisfies SFO, then L ⩽p DNFTZI ,
and in particular LSBB ⩽p DNFSBB , by Proposition 1.2.16 and Lemma 7.5.16.

However, we know that OSDDSBB ∼p OBDDSBB and that OSDDSB<,B ∼p OBDDSB<,B
[Prop. 7.2.8]; hence, if OSDD or OSDD< satisfied SFO, we would get OBDDSBB ⩽p

DNFSBB or OBDDSB<,B ⩽p DNFSBB , respectively. Since it is impossible [Th. 1.4.17],
this means that OSDD and OSDD< do not satisfy SFO.

As for FSDD, it satisfies VA [Prop. 7.4.5], so having FSDDSBB ⩽p DNFSBB would
imply that we could check the validity of any Boolean DNF in polytime, which is
impossible unless P = NP [Th. 1.4.18]. Hence, FSDD does not satisfy SFO unless
P = NP.

Corollary 7.5.66. OSDD and OSDD< do not satisfy FO or TR. FSDD does not satisfy
FO or TR unless P = NP.

Proof. The results hold because SFO is implied by FO, and FO by TR (forgetting
a set of variables {x1, . . . , xk} boils down to computing the restriction to the valid
term

[
x1 ∈ Z

]
∧ · · · ∧

[
xk ∈ Z

]
).

Lemma 7.5.67. OSDD and OSDD< do not satisfy SEN. FSD, FSDD, OSD, and OSD< do
not satisfy SEN unless P = NP.

Proof. Let L be a language among FSD, FSDD, OSD, OSDD, OSD<, and OSDD<. We
use a similar technique as in the proof of Lemma 7.5.65.

Let Σ be a CNFTZI -representation. Each of its clauses can be transformed in an
L-representation φi in polytime [Prop. 7.4.3]. Let us apply Algorithm 7.8 on the φi.
Thanks to Lemma 7.5.64, we know that we obtain in polytime an L-representation
ψ such that

∀x.JψK ≡ n∧
i=1

JφiK.

Suppose L satisfies SEN; then we can obtain an L-representation of
∧n
i=1JφiK, and

thus Σ, in polytime. All in all, this means that if L satisfies SEN, then L ⩽p CNFTZI ,
and in particular LSBB ⩽p CNFSBB , by Proposition 1.2.16 and Lemma 7.5.16..

However, we know that OSDDSBB ∼p OBDDSBB and that OSDDSB<,B ∼p OBDDSB<,B
[Prop. 7.2.8]; hence, if OSDD or OSDD< satisfied SEN, we would get OBDDSBB ⩽p

CNFSBB or OBDDSB<,B ⩽p CNFSBB , respectively. Since it is impossible [Th. 1.4.17],
this means that OSDD and OSDD< do not satisfy SEN.

As for the other languages, they all satisfy CO [Cor. 7.5.9], so having LSBB ⩽p

CNFSBB would imply that we could check the consistency of any Boolean CNF in

195



Chapter 7 Set-labeled Diagrams Framework

polytime, which is impossible unless P = NP [Th. 1.4.18]. Hence, FSD, FSDD,
OSD, and OSD< do not satisfy SEN unless P = NP.

Corollary 7.5.68. OSDD and OSDD< do not satisfy EN. FSD, FSDD, OSD, and OSD< do
not satisfy EN unless P = NP.

Lemma 7.5.69. SD and SDD do not satisfy EN unless P = NP.

Proof. The proof is similar to that of Lemma 4.4.11: we show that if these lan-
guages satisfied EN, they would also satisfy VA. Indeed, if they satisfied EN, we
could obtain in polytime, for any φ, an SD ψ equivalent to ∀V.JφK, with V =
Scope(φ). By definition of the quantification [Def. 1.4.9], Scope(ψ) = ∅; after
reducing ψ, we thus obtain either the empty or the sink-only SD [Lemma 7.5.15]. It
is hence easy to check whetherψ is consistent; and thanks to Proposition 1.4.10, we
know that φ is valid if and only if ψ is consistent. We could thus check in polytime
the validity of any SD or SDD; yet neither SD nor SDD satisfies VA unless P = NP
[Lemma 7.5.32].

Lemma 7.5.70. SD and SDD do not satisfy FO or TR unless P = NP.

Proof. The proof is similar to that of Lemma 4.4.12. We show that if one of these
languages satisfied FO, they would also satisfy CO.

Indeed, we could in this case obtain in polytime, for any φ, an SD ψ equivalent
to ∃V.JφK, with V = Scope(φ). By definition of the quantification, [Def. 1.4.9]
Scope(ψ) = ∅; after reducing ψ, we thus obtain either the empty or the sink-only
SD [Lemma 7.5.15]. It is hence easy to check whether ψ is consistent; and thanks
to Proposition 1.4.10, we know thatφ is consistent if and only ifψ is consistent. We
could thus check in polytime the consistency of any SD or SDD; yet it is impossible
unless P = NP [Lemma 7.5.32].

Hence, neither SD nor SDD satisfies FO unless P = NP; and since TR implies FO
(forgetting a set of variables {x1, . . . , xk} boils down to computing the restriction
to the valid term

[
x1 ∈ Z

]
∧ · · · ∧

[
xk ∈ Z

]
), SD and SDD do not satisfy TR unless

P = NP.

Lemma 7.5.71. SD and SDD satisfy SFO and SEN.

Proof. We use the Shannon decomposition [Prop. 1.4.12] using a mesh, just as we
did on FIAs [see proof of Prop. 4.3.8, p. 120]. Any sublanguage of SD that satisfies
both CD and ∨C satisfies SFO; any sublanguage of SD that satisfies both CD and ∧C
satisfies SEN.

Since SD and SDD satisfy CD [Lemma 7.5.13], ∨C [respectively, Prop. 7.4.1 and
Lemma 7.5.51], and ∧C [Prop. 7.4.2], they satisfy both SFO and SEN.

Final Proof
Proof of Theorem 7.4.9 [p. 165]. All the results of this theorem come from propo-
sitions and lemmas. Tables 7.5 and 7.6 associate with each claim its corresponding
proposition.
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CHAPTER

8

Building Set-labeled Diagrams

Chapter 7 identified a number of sublanguages of set-labeled diagrams suiting our
application, namely, the family of focusing set-labeled diagrams. We saw that FIAs
can be transformed into FSDs in polytime without loss of information. In this chap-
ter, we study how to compile set-labeled diagrams directly from a constraint net-
work over discrete variables. We begin by formally defining this input language
[§ 8.1], then quickly survey bottom-up compilation [§ 8.2], and lastly present our
“CHOCO with a trace” compiler [§ 8.3].

8.1 Discrete Constraint Networks

As we have seen in Section 1.6.1, the constraint network [Definition 1.6.1] is a
natural, generic way of representing a knowledge base. Deciding whether a given
constraint network over enumerated variables is consistent is generally called a
discrete constraint satisfaction problem (CSP). We use a similar name here.
Definition 8.1.1. A discrete constraint network (DCN) is a constraint network Π =
⟨V,C ⟩ in which V ⊆ E .

Note that DCNs’ variables are not strictly the same as SDs’: only finite intervals of
integers are considered here. This distinction has two advantages: first, it reflects
the most widespread definition of discrete CSPs, and second, it allows the compi-
lation of any DCN into SD, since SDE is complete [Proposition 7.2.6]. Hence, in
order to compile the solution set of a discrete CN as an SD, no approximation is
necessary, contrary to the compilation of continuous CNs as IAs [§ 5.1].

Constraints are simply defined as sets of assignments. However, they are not
always given in this form; two cases are generally distinguished.

• A constraint can be given in extension, that is, using a list of admissible tuples
of values. This directly corresponds to the definition.
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• A constraint can be given in intension, that is, using a formula over its scope
variables: the admissible tuples are those that are consistent with the formula.

Constraints given in extension can be seen as DNF formulæ—and can as such be
transformed into SDs in polytime [Proposition 7.4.4]. On the contrary, constraints
given in intension are not directly translatable into SDs: consider for example con-
straints x < y, x× y = z, or alldiff(x1, . . . , xn).

To compile a DCN into SD, we choose to transform constraints given in inten-
sion into DNF formulæ. For that purpose, we use a discrete CN solver as a tool to
help us build SDs. Contrary to the continuous CN solver RealPaver that we used to
build interval automata, discrete CN solvers return the exact solution set of an input
constraint network. There are no concerns about approximation in this chapter. The
particular solver we used is CHOCO [CHO10]: it is an open-source solver, written
in Java, that implements a lot of state-of-the-art constraint satisfaction techniques.

8.2 Bottom-up Compilation

Aside from the fact that the resolution step outputs the exact solution set rather than
an approximation, using CHOCO’s output to compile SDs is very similar to using
RealPaver’s output to compile IAs [§ 5.2]. CHOCO outputs the enumerated solu-
tion set of its input DCN, that is to say, it outputs a list of all solutions. There is no
box in this context, only assignments—but assignments are just specific boxes, and
are consequently polynomially translatable into any sublanguage of SD, as shown
in Proposition 7.4.3. However, disjoining these SDs is necessary to obtain an SD
representing the same Boolean function as the original DCN. To compile ordered
SDs, care must be taken that all assignment SDs have the same variable ordering.
Note also that ordered SDDs are likely to be larger than nonexclusive ordered SDs,
since they only support bounded disjunction in polytime.

Using the output of CHOCO is the simplest way to compile a DCN into an SD.
It is also possible, following Amilhastre [Ami99], to compile an SD for each con-
straint in the DCN, then combine the elementary SDs into a larger one representing
the conjunction of all constraints and thus the complete DCN. This was not pos-
sible on FIA, since this language does not support conjunction in polytime, even
bounded; but it is possible on OSD< and OSDD<, provided that the same variable
order is used to compile all constraints.

As we explained in Section 1.6.1.1, the drawback of this kind of method is that
it generates intermediate data structures, which are space consuming and can even
be exponentially larger than the final decision diagram. This is why we examine a
different method, based on CHOCO’s trace, as we did with RealPaver [§ 5.3].
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8.3 CHOCO with a Trace

We apply the principles of “DPLL with a trace” [HD05a] to the CHOCO solver.
The idea of using a solver trace for compilation has been adapted by Hadzic et
al. [HH+08], who build approximate MDDs (i.e., MDDs the model set of which
is an approximation of the solution set of the input constraint network) tracing a
depth-first search algorithm. A similar technique is used by Mateescu, Dechter,
and Marinescu [MDM08], where AOMDDs (MDDs with “and” nodes) are built
following the trace of an AND/OR search.

These approaches use a predetermined variable order (a tree order in the case
of AOMDDs), and variables cannot be repeated along a path. We relax these as-
sumptions here: the choice of the next variable to branch on can be done dynam-
ically, depending on a heuristics, and domains need not be split into singletons,
which means that a variable can be branched on several times along a search path.
Indeed, one does not always need ordered SDs; focusing SDs are sufficient for ap-
plications needing only conditioning and model extraction, such as the exploitation
of a decision policy.

8.3.1 CHOCO’s Search Algorithm

Algorithm 8.1 is a simplified version of CHOCO’s search procedure. It is a generic
depth-first search, with constraint propagation at each search node. We present it
as a recursive, high-level procedure to clarify the way it works.

It takes as input a constraint networkΠ = ⟨X, C⟩, defined by a set of constraints
C over a set of variables X [Definition 1.6.1], as well as a set of assigned variables
(this set being of course empty at the top-level call). It outputs the enumerated
model set of Π, i.e., each model is explicitly returned.

First, Algorithm 8.1 calls the internal function Prune on the current DCN; this
is the propagation step, where values are removed from variable domains when they
are proven incompatible with some constraints. The Prune function uses several
state-of-the-art constraint propagation techniques, that we do not detail here [see
CHOCO’s user guide: CHO10]. We retrieve a modified DCN (line 1), which is
guaranteed to have the same solution set as input Π.

Then, the procedure checks whether it has encountered a leaf in the search tree:
this is the case either (i) if the current DCN is inconsistent (that is, one variable has
an empty domain), in which case the empty set is returned, or (ii) if all variables
have been assigned, in which case the corresponding assignment is a solution.

The remainder of the procedure takes care of new nodes in the search tree. A
variable x is chosen, using function Sel_var; the choice depends on a heuristics
selected by the user, but only unassigned variables can be selected. Then the current
domain of the chosen variable is partitioned, using the Split function. The user
can control the number of elements in the partition and the size of each element.
Then, for each element r in the partition, the procedure recursively calls itself on the
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Algorithm 8.1 CHOCO(Π, Xa): returns the set of all solutions of the discrete CN Π.
Xa is the current set of assigned variables.

1: Prune(Π)
2: if Π is proven inconsistent then
3: return ∅
4: if Xa = X then // all variables in Π are assigned
5: let #—x be the corresponding assignment
6: return { #—x}
7: x := Sel_var(Π)
8: R := Split(Π, x)
9: S := ∅

10: for each r ∈ R do
11: let X ′a := Xa

12: if r is reduced to a singleton then // x is now assigned
13: X ′a := X ′a ∪ {x}
14: Sr := CHOCO(Π|x∈r, X ′a)
15: S := S ∪ Sr
16: return S

DCN Π in which Dom(x) has been restricted to r. If r is a singleton, variable x is
marked as assigned: it will not be modified anymore in the current search subgraph.

The described procedure is not specific to CHOCO. Note in particular that the
actual implementation of internal functions Prune, Split, and Sel_var does not
matter as long as they fulfill the requirements.

8.3.2 Tracing CHOCO

Our approach consists in following Algorithm 8.1 to build set-labeled diagrams,
instead of simply returning an enumeration of the solution set. Similarly to what
has been done in Section 5.3.2, we present the modified Algorithm 8.2 using frames
to indicate changes.

The set-labeled diagram built by Algorithm 8.2 exactly reflects the search tree.
It does not need to handle “pruning nodes”, like Algorithm 5.3 [p. 133], because
there is no precision parameter: the search goes on until every variable is explicitly
assigned.

Whenever the procedure reaches a leaf node in the search tree, this leaf node
corresponds either to a solution or to a dead-end; in the former case, the algorithm
returns a sink-only SD (line 5), to account for the fact that any assignment is a
solution of the current problem; in the latter case, it returns an empty SD (line 3).

In the case of an internal search node, an unassigned variable x is chosen, and
its current domain is split. The exploration of the search tree associated with each
partition element r returns an SD ψr that represents the solution set of the subprob-
lem Π|x∈r obtained by reducing the domain of x to r. The solution set of the current
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Algorithm 8.2 CHOCO_to_SD(Π, Xa): returns a set-labeled diagram that represents
the solution set of the discrete CN Π. Xa is the set of currently assigned variables.

1: Prune(Π)
2: if Π is proven inconsistent then
3: return the empty SD

4: if Xa = X then // all variables in Π are assigned
5: return the sink-only SD

6: x := Sel_var(Π)
7: R := Split(Π, x)
8: Ψ := ∅

9: for each r ∈ R do
10: let X ′a := Xa

11: if r is reduced to a singleton then // x is now assigned
12: X ′a := X ′a ∪ {x}
13: let ψr := CHOCO_to_SD(Π|x∈r, X ′a)
14: add the couple ⟨r, ψr⟩ to Ψ

15: let node N := Get_node(x,Ψ)
16: let ψ be the graph rooted at N
17: return ψ

constraint network Π is then an SD ψ, rooted at an x-node with an r-labeled outgo-
ing edge pointing to ψr for each r in the domain partition. This node is obtained on
line 15 thanks to an internal function Get_node, which works in a fashion similar
to the Get_node from Section 5.3.2. In particular, it does not add an r-edge if the
relative SD ψr is empty, and makes as many reduction operations as possible on the
fly. The compiled SD is, for instance, guaranteed to contain no isomorphic nodes,
thanks to the unique node table maintained by Get_node.

Like for Algorithm 5.2 [p. 131], at any time during compilation, the current SD
is always smaller than the final one (but note that the resulting SD is generally not
reduced, since stammering nodes cannot be treated by Get_node). The procedure
is therefore polyspace with respect to the size of its output, which is not the case
for the bottom-up approach.

8.3.3 Caching Subproblems
Still following Huang and Darwiche [HD05a], we try to achieve a time complexity
closer to the size of the output by using caching.

Principle and Algorithm
The purpose is to avoid equivalent subproblems from being re-explored. Changes
are shown in Algorithm 8.3. More precisely, each time a subproblem Π is solved,
it is stored in a hash table at key k, which depends on the current variable domains
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Algorithm 8.3 SD_builder(Π, Xa): returns a set-labeled diagram that represents
the solution set of the discrete CN Π. Xa is the set of currently assigned variables.

1: Prune(Π)
2: k := Compute_key(Π, Xa)
3: if there is an entry for the key k in the cache then
4: return the SD corresponding to key k in the cache

5: if Π is proven inconsistent then
6: return the empty SD
7: if Xa = X then // all variables in Π are assigned
8: return the sink-only SD
9: x := Sel_var(Π)

10: R := Split(Π, x)
11: Ψ := ∅
12: for each r ∈ R do
13: let X ′a := Xa

14: if r is reduced to a singleton then // x is now assigned
15: X ′a := X ′a ∪ {x}
16: let ψr := SD_builder(Π|x∈r, X ′a)
17: add the couple ⟨r, ψr⟩ to Ψ
18: let node N := Get_node(x,Ψ)
19: let ψ be the graph rooted at N
20: store ψ at key k in the cache

21: return ψ

(line 20). Moreover, prior to processing any subproblem Π′, the compiler computes
its key k′ (line 2), checks whether it is already present in the hash table, and returns
the corresponding SD if it is the case (line 4).

The idea is that since the subproblems in question are equivalent, exploring the
search subtree for the second subproblem is useless: the obtained SD would be
equivalent to the cached one anyway. In a way, the use of a cache transforms the
search tree into a search graph. Note that this caching concerns problems—it is
unrelated to the unique node table used to avoid creating isomorphic nodes.

Computation of the Cache Key
Let Π be the current constraint network at a given search node, and Xa be the
set of variables already assigned in Π. Exploring the search subtree rooted at the
current node returns an SD, that involves only variables in X \Xa, and represents
the solution set of Π restricted to X \Xa. The current constraint network Π′ at a
different search node is equivalent to Π if and only if the corresponding SDs are
equivalent—that is to say, if and only if their solution sets restricted to X \Xa are
equal.

Since we use caching to avoid having to explore equivalent subproblems mul-
tiple times, cache keys must be designed so that they group as many equivalent
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subproblems as possible. Ideally, all equivalent subproblems are associated with
a same key, so that the algorithm never computes a subgraph equivalent to one it
already returned. However, for the cache lookup to be efficient, the key must be as
short and easy to compute as possible. A compromise is therefore necessary.

Intuitively, the current subproblem could be represented by a key listing the
current domain of all variables. It is possible to reduce the size of the key, by
using the exact same technique as Lecoutre et al. [LS+07]. The idea is to remove
some of the variables from the key; to be removed, a variable x must be assigned
(x ∈ Xa) and involved only in constraints proven to be necessarily satisfied in the
current subproblem (such constraints are sometimes called universal or entailed
constraints). Lecoutre et al. [LS+07] have proven that this mechanism preserves
the solution set.

Advantages of Caching

Caching is interesting for the reasons described by Huang and Darwiche [HD05a]—
it allows the time complexity of the compiler to be polynomial in the output. This
is not especially related to the compilation aspect of the procedure: for example,
Lecoutre et al. [LS+07] apply this idea to constraint satisfaction procedures, in
which the goal is to find only one solution. Of course, they do not cache consistent
subproblems, since their algorithm stops as soon as a solution is found.

There is also another advantage to caching, which is related to compilation
only. If the current subproblem is consistent, storing its SD may allow the size of
the final SD to decrease. Indeed, if caching were not used, equivalent subproblems
would be explored independently, possibly using different variable orders, espe-
cially when variable selection heuristics and domain partitioning involve random-
ness. This may lead to several subgraphs representing the same Boolean function
without being isomorphic, hence the increase in the resulting graph size.

Cache Minimization

Keeping track of every single subproblem can lead to a huge cache. In order to
minimize memory space, we choose to limit cache size to an arbitrary value. That
is to say, each time the cache is full, some entries have to be removed—the goal
being to keep only the most interesting ones.

We use the following heuristics: first, discard entries that have been used the
least, then the oldest entries, and then entries with the longest keys (which corre-
spond to small subproblems).

This cache minimization technique reduces the amount of memory space nec-
essary for the compiler to run, and also speeds up cache operations. This allows
larger problems to be compiled, but does not improve the resulting SD; it is actu-
ally the opposite, since, as we showed in the previous subsection, using a cache can
reduce the size of the output.

205



Chapter 8 Building Set-labeled Diagrams

8.3.4 Properties of Compiled SDs

Structure
For the same reasons as for “RealPaver with a trace” [see § 5.3.5.1], the set-labeled
diagrams returned by Algorithm 8.3 always satisfy the focusing property. Indeed,
variable domains can only be reduced, either by domain splitting or by constraint
propagation. Contrary to the FIAs obtained in Chapter 5, however, the returned SDs
always satisfy exclusive decision: indeed, function Split computes a partition
of the variable’s current domain. Since partitions contain only disjoint subsets,
Algorithm 8.3 always outputs FSDDs.

However, depending on the behavior of the Sel_var and Split functions, the
structure of these FSDDs can be more specific.

• If Split branches on singletons, each variable is always assigned the first
time it is chosen; the resulting set-labeled diagrams thus satisfy the read-once
property.

• If Sel_var moreover follows a static ordering < on the variables, the result
is an OSDD<-representation.

Variables
Note that being based on CHOCO, our compiler is inherently restricted to the in-
terpretation domain of CHOCO’s input. That is to say, it handles enumerated
variables only, whereas SDs can potentially use variables with an unbounded do-
main. “CHOCO with a trace” thus provides SDE -representations only. Since MDD =
OSDDSZE [see Section 7.2.2], it could be expected that by branching on singletons and
following a static variable ordering, “CHOCO with a trace” would provide MDDs.
This is actually not the case in general, because the contiguity reduction operation
applied by the Get_node function can merge some edge labels, changing the lit-
eral expressivity from SZ to TZ. Using this specific tuning, the compiled form is
generally an OSDDE -representation, but may not be an OSDDSZE -representation, that
is, an MDD.

***

We implemented “CHOCO with a trace” by adding the elements presented in
this chapter to the source code of CHOCO. This compiler allowed us to obtain
experimental results for our applications; this is the object of the next chapter.
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CHAPTER

9

Experiments with
Set-labeled Diagrams

Set-labeled diagrams can be used to discretize interval automata. We showed in
Chapter 7 that the language of focusing SDs and its sublanguages support the ma-
jor queries and transformations necessary for compilation-based planning appli-
cations. In particular, this implies that discretizing IAs is harmless: SDs can be
handled online as efficiently as IAs. It is also interesting for problems involving
only enumerated variables, such as our ObsToMem or Telecom benchmarks. For
that reason, we studied in Chapter 8 ways to compile discrete constraint neworks
into SDs.

In the present chapter, we outline our experimental manipulation of set-labeled
diagrams. We give some details about the framework we implemented [§ 9.1], then
present our experimental compilation results [§ 9.2], and finally provide results
about the practical use of SDs [§ 9.3].

9.1 Implementation

9.1.1 Experimental Framework

We implemented a library, written in Java, allowing a user to handle set-labeled dia-
grams. It works in a manner similar to our IA library [§ 6.1], relying on a Get_node
function to incrementally build SDs while applying reduction operations on the fly.
Our library is able to handle the eight SD sublanguages we defined in Chapter 7.
This is done using a system of graph properties: the program is able, for exam-
ple, to recognize that an SD is focusing—and to choose an implementation of the
queries and tranformations that fits this specificity. Consider for example an SD
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on which a user needs to forget some variables: the basic way to do this is by com-
puting a disjunction of conditioned graphs, but if the SD is focusing, there exists a
much more efficient method, which our program can choose automatically.

9.1.2 Set-labeled Diagrams Compiler

There are currently three ways to build an SD within our framework: “by hand”,
with the Get_node function; by discretizing an interval automaton; and by us-
ing“CHOCO with a trace”. The discretization procedure works as described in
Section 7.3.2, computing meshes of the given IA and associating some discrete
value with each element of each mesh.

We modified the code of the constraint solver CHOCO for it to build an FSDD
while performing a search, as detailed in Section 8.3. In particular, we implemented
suproblem caching, that impacts CHOCO’s search procedure by preventing it from
exploring equivalent subproblems multiple times. We also implemented a number
of heuristics guiding the choice of the next variable to branch on. In particular,
we implemented the heuristics described by Amilhastre [Ami99], namely HBW,
HSBW, and MCSInv, that choose the next variable depending on the variables
that have already been chosen and on the variables they are linked to. These three
heuristics are static, that is, the variable order is computed once and for all, before
the start of the compilation. We modified them to make them dynamic, that is to
say, they choose the next variable depending on the current constraint network.

9.1.3 Operations on Set-labeled Diagrams

We implemented a number of operations on SDs, mainly those of polynomial com-
plexity. The available queries are the following: consistency (CO) on FSD, model
checking (MC) on all languages, equivalence (EQ) on all languages, model extrac-
tion (MX) on all languages, context extraction (CX) on FSD, model counting (CT)
on all languages, and model enumeration (ME) on all languages. Available trans-
formations include conditioning (CD) on all languages, forgetting (FO) on FSD and
OSD, disjunction (∨C) on SD, FSD, and OSD<, conjunction (∧C) on SD and SDD, bi-
nary conjunction (∧BC) on OSD< and OSDD<, and conjunction with a term (∧tC) on
all languages.

In addition, we implemented the “special” queries we defined in Section 6.1.3,
namely CDCO (consistency once conditioned), CDMX (model extraction once con-
ditioned), and CDFOMX (model extraction once conditioned and projected). A
fourth special query has been added, the purpose of which is to extract the con-
text of a given set of variables in an SD that has been restricted to a given term.
We call this query TRCX. It can be used for example on a decision policy, to check
the values of action variables that remain available after an uncertain observation.
It can also be especially useful in configuration applications, in which extracting
contexts is especially important.
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9.2 Compilation Tests

problem time #nodes #edges charac. filesize
(ms) size (octets)

Drone4-30-3 3397 217 315 337 10 901
Drone7-30-3 11 146 625 929 953 28 957
Drone10-30-3 69 092 2145 3145 3239 97 941
Drone13-30-3 1 574 836 10 222 14 787 14 824 472 074
ObsToMem1-2-4-1-2 1796 308 383 416 13 895
ObsToMem1-2-4-2-4 2246 279 358 389 12 954
ObsToMem2-3-6-2-3 15 843 9515 11 415 11 893 385 461
ObsToMem2-3-6-3-6 23 002 4580 5612 5817 188 010
ObsToMem3-4-8-1-2 63 790 92 778 104 505 106 389 3 836 096
ObsToMem3-4-8-1-3 180 379 125 361 144 563 148 927 5 303 145
ObsToMem3-4-8-1-4 438 697 126 015 147 562 153 035 5 377 446
ObsToMem3-4-8-1-6 504 718 60 078 73 664 76 173 2 587 457
ObsToMem3-4-8-2-4 555 211 128 317 152 098 158 695 5 517 311
Telecom3-5-5-32 19 047 1631 2234 2256 68 021
Telecom3-5-6-40 34 087 2721 3865 3888 115 796
Telecom3-5-6-64 107 933 4661 7390 7413 209 898
Telecom4-5-4-33 37 207 2115 3010 3035 89 883
Telecom4-5-5-43 119 785 3906 5855 5881 170 737
Telecom4-6-5-56 715 574 8405 13 671 13 698 384 139
Telecom4-6-6-63 1 324 677 13 763 21 592 21 620 624 958

Table 9.1: Compilation results using “CHOCO with a trace”.

Using “CHOCO with a trace”, we compiled on a standard laptop a number of
instances of the Drone (in its discrete form), ObsToMem, and Telecom benchmarks.
We used the dynamic HBW heuristics and a splitting function that enumerates the
current domain; we thus compile free-ordered read-once SDDs in practice. The
results can be found in Table 9.1; they include compilation time, number of nodes
and edges, characteristic size, and size of a file containing a text version of the
SD. All Drone instances have a fixed allotted time of 30 units, and 3 balls; the
varying parameter is the number of zones. ObsToMem instances are labeled with
the number of detector lines, the number of COMs, and the number of memory
banks; the last two parameters are the maximum number of failures of COMs and
memory banks, respectively. The Telecom instances are labeled with the number of
input channels, the number of amplifiers, the number of output channels, and the
number of available paths.

The properties of compiled forms are satisfactory; they are relatively small, and
except for the largest instances, could probably be embarked in autonomous sys-
tems. However, compilation is longer than expected, given the size of the compiled
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problem CD FO MX CD MX CDFOMX CDMX
#—s S′ ↪→ #—a #—a ↪→ #—s ′ ⟨ #—s ,S′⟩↪→ #—a #—a ↪→ #—s ′

Drone4-3-30 28 16 0 14 1 1 1
Drone7-3-30 99 39 2 21 1 1 2
Drone10-3-30 72 11 0 9 0 4 5
Drone13-3-30 553 34 1 22 1 74 59
OTM1-2-4-1-2 37 10 1 4 0 1 1
OTM1-2-4-2-4 110 60 13 24 0 1 1
OTM2-3-6-2-3 429 26 2 6 0 12 4
OTM2-3-6-3-6 270 78 17 26 0 33 2
OTM3-4-8-1-2 5619 71 39 26 0 235 11
OTM3-4-8-1-3 10 516 463 74 171 0 127 19
OTM3-4-8-1-4 5148 1258 63 156 0 30 2
OTM3-4-8-1-6 3160 509 96 1329 0 25 4
OTM3-4-8-2-4 6891 68 13 17 0 32 3

Table 9.2: Results for Scenario 1 on several instances of the Drone and ObsToMem
transition relations. All times are in milliseconds.

forms. In Chapter 6, using “RealPaver with a trace”, we compiled larger graphs in
less time. This issue may come from our implementation of subproblem caching.
Our results nevertheless show that this approach is worth being further studied.

9.3 Application Tests

In this section, we provide results about the online use of compiled forms. Sim-
ilar to what we did in Section 6.3, we simulate realistic sequences of operations
corresponding to the nature of the compiled problem.

9.3.1 Simulating Online Use of a Transition Relation

Let us begin by the compiled transition relations, namely theDrone andObsToMem
instances. We applied the four scenarios we described in Section 6.3.1. The first
scenario aims at choosing an action that is executable in the current state, and re-
trieve one state among those it can lead to. Results are presented in Table 9.2.
Scenario 2 is similar, but no action is chosen: we just want to find out a possible
next state. Table 9.3 contains results for this simulation. Scenario 3 aims at return-
ing a predecessor state of the current state; finally, the purpose of Scenario 4 is to
find a state-action pair that can lead to the current state. Results for Scenarios 3
and 4 can be found in Table 9.4.

Unsurprisingly, the general profile of each operation is similar to what we no-
ticed in Section 6.3.1: the hardest operation is the first conditioning, followed by
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problem CD FO MX CDFOMX
#—s A ↪→ #—s ′ ⟨ #—s ,A⟩↪→ #—s ′

Drone4-3-30 28 11 1 0
Drone7-3-30 99 40 4 1
Drone10-3-30 72 14 1 5
Drone13-3-30 553 50 5 67
ObsToMem1-2-4-1-2 37 6 0 1
ObsToMem1-2-4-2-4 110 54 1 1
ObsToMem2-3-6-2-3 429 27 2 22
ObsToMem2-3-6-3-6 270 54 1 10
ObsToMem3-4-8-1-2 5619 146 1 117
ObsToMem3-4-8-1-3 10 516 336 1 134
ObsToMem3-4-8-1-4 5148 285 1 38
ObsToMem3-4-8-1-6 3160 345 1 19
ObsToMem3-4-8-2-4 6891 43 1 32

Table 9.3: Results for Scenario 2 on several instances of the Drone and ObsToMem
transition relations. All times are in milliseconds.
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problem CD FO MX CD MX
#—s ′ A ↪→ #—s #—s ′ ↪→ #—s . #—a

Drone4-3-30 24 6 1 4 24 1 1
Drone7-3-30 90 27 4 2 90 7 1
Drone10-3-30 122 38 3 1 122 7 1
Drone13-3-30 1001 476 57 7 1001 64 4
OTM1-2-4-1-2 43 22 2 0 43 3 0
OTM1-2-4-2-4 137 100 5 1 137 17 3
OTM2-3-6-2-3 773 378 29 1 773 87 1
OTM2-3-6-3-6 394 196 15 1 394 54 1
OTM3-4-8-1-2 8223 2728 175 1 8223 877 2
OTM3-4-8-1-3 15 413 10 455 512 2 15 413 3577 3
OTM3-4-8-1-4 9908 6782 319 0 9908 1791 1
OTM3-4-8-1-6 6567 4376 261 2 6567 1346 1
OTM3-4-8-2-4 9739 3263 309 0 9739 1144 1

Table 9.4: Results for Scenarios 3 and 4 on several instances of the Drone and
ObsToMem transition relations. All times are in milliseconds.
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problem CD MX CDMX CT
#—s ↪→c #—s ↪→c ↪→#c

Telecom3-5-5-32 68 0 3 31
Telecom3-5-6-40 105 0 7 57
Telecom3-5-6-64 408 1 15 170
Telecom4-5-4-33 110 1 1 37
Telecom4-5-5-43 324 1 7 145
Telecom4-6-5-56 489 3 8 321
Telecom4-6-6-63 273 0 7 186

Table 9.5: Results for the online use of several instances of the Telecom problem.
All times are in milliseconds.

the forgetting in Scenario 3. Model extraction is fast, independantly from the size
of the graph. The special queries CDMX and CDFOMX perform well. Note how-
ever that while they are slower than model extraction in Scenarios 1 and 2 (forward
lookahead in the state-transition system), it is the opposite in Scenarios 3 and 4
(backward lookahead in the state-transition system).

All in all, basic handling of transition relations compiled as set-labeled dia-
grams seems possible in practice; it would be interesting to examine whether more
complex uses remain workable, such as the use of FSDD to build a decision policy
using a planning as model-checking approach [GT99].

9.3.2 Simulating Online Use of the Telecom Benchmark

The problem underlying the Telecom benchmark is similar to that ofObsToMem, but
the latter is encoded as a transition relation (“if this COM fails, it cannot be used in
the next state”), whereas the former is encoded as a set of valid configurations. An
online use of this constraint network is to specify an observed state of the system—
that is, such input channel is active or not, such amplifier is out of order—and to
extract one valid configuration, that is, a path linking each active input channel to
an available amplifier and output channel. Once again, this scenario combines a
conditioning and a model extraction. On this benchmark, it can also be interesting
to count the possible configurations; this can be used for example as an indicator of
the overall health state of the system. This boils down to a standard model counting
query (CT). We present experimental results for these scenarios in Table 9.5.

Like for the transition relations in the previous section, simulations for the first
scenario are satisfactory. Using such a compiled form to indicate valid configura-
tions to an online controller seems a viable idea, especially if it uses the dedicated
CDMX query, which is orders of magnitude faster than the combination of CD and
MX. Counting valid configurations also turns out to be a tractable online task.
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In this thesis, we studied the application of knowledge compilation to the control
of aeronautical and spatial autonomous systems. Looking into the literature, we
found no work addressing the compilation of problems involving continuous vari-
ables, whereas such problems are common when dealing with realistic autonomous
systems. Our approach thus consisted in defining and studying target compilation
languages:

• allowing the representation of Boolean functions on both continuous and dis-
crete variables;

• supporting in polytime the queries and transformations we identified as major
for compilation-based planning;

• being as compact as possible—and therefore as general as possible.

This conclusion sums up the contributions and limitations of our work, and outlines
some perspectives for future work.

Contributions

A State-of-the-Art Knowledge Compilation Map
We extended the existing knowledge compilation map framework [GK+95, DM02,
FM07, FM09] so that it includes representation languages for any kind of func-
tion. In particular, we defined a general language that encompasses all graph-based
languages representing Boolean functions, and allows us to easily extend existing
languages from Boolean variables to discrete or continuous variables—defining
for example MDD as a particular sublanguage of OBDD. We also proposed an ex-
tension to non-Boolean variables of the classical queries and transformations on
Boolean languages. Casting known results in our extended framework, we drew
up the knowledge compilation map of Boolean graph-based languages; it is how-
ever not complete yet.
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Knowledge Compilation for Planning
We studied the literature about the application of knowledge compilation to plan-
ning problems, and provided an overview of what has already been done. We pro-
posed new queries and transformations that are useful in planning, but also in diag-
nostic and configuration applications. We identified a number of important queries
and transformations that a target compilation language should satisfy to be used on-
line by an autonomous system. We found no study about the compilation of prob-
lems involving continuous variables, and decided to examine new target languages
allowing this.

A New Target Language for Real Variables
We defined the language of interval automata (IAs), that generalizes binary decision
diagrams in multiple ways:

• variables can be discrete or continuous;

• edge labels are intervals, not singletons;

• decision nodes are not exclusive, that is, edge labels are not necessarily dis-
joint;

• pure disjunctive nodes are allowed.

This generalization implied a modification of the classical reduction procedure of
binary decision diagrams.

We also identified a sublanguage of IA, namely that of focusing interval au-
tomata, that satisfies several important queries and transformations, among which
CO, MX, CD, and FO, making it a good target language for online planning.

After having drawn up the knowledge compilation map of IAs and FIAs, includ-
ing succinctness results, satisfaction of queries, and satisfaction of transformations,
we described methods to compile problems into FIA, notably by tracing the search
tree of an interval-based constraint solver, à la “DPLL with a trace” [HD05a].

Experimenting FIAs
We implemented a framework for handling interval automata, including a unique
node table to process isomorphic nodes, and various queries and transformations,
notably those that are used for the control of autonomous systems. We also im-
plemented a prototype of the compiler “RealPaver with a trace”. Our first experi-
ments showed that the practical use of FIAs for controlling autonomous systems is
conceivable: compiled forms for our benchmarks have a reasonable size, allowing
them to be embarked; and execution of operations, even if they are not optimized,
is fast enough for an online use to be possible.

However, the memory space that is gained when compared to binary decision
diagrams—since no discretization is needed—is most likely compensated by real
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numbers taking more memory space than integers. Nevertheless, we remarked that
interval automata define an intrinsic discretization of the variable domains. This
means that it is actually possible to translate IAs into a target language over discrete
variables, without losing information, or increasing the size of the compiled form.
We thus decided to study the family of languages corresponding to discrete IAs.

A New Target Language for Discrete Variables
We defined the language of set-labeled diagrams (SDs), that generalize binary de-
cision diagrams and multivalued decision diagrams in multiple ways:

• variables are discrete, but can have an unbounded domain;

• edge labels are unions of intervals, not singletons;

• decision nodes are not exclusive, that is, edge labels are not necessarily dis-
joint;

• pure disjunctive nodes are allowed.

Once again, we adapted the reduction procedure to these new specifications, and
identified sublanguages of SD, among which those of focusing set-labeled diagrams
(FSD), of ordered ones (OSD), and their counterparts satisfying exclusive decision:
SDD, FSDD, and OSDD.

After having formally shown that FIAs can be transformed into FSDs of similar
size in polytime, we drew up the knowledge compilation map of all languages in
the SD family, with their relative succinctness, and the queries and transformations
they support in polytime. In particular, FSD satisfies the queries and transforma-
tions satisfied by FIA, which is not surprising but ensures that handling FIAs trans-
formed into FSDs online is not harder than directly handling FIAs. FSDD and OSDD
can also be interesting for some applications, depending on the set of queries and
transformations required to be tractable.

We described a method to compile problems into FSDD or OSDD, adapted from
the “DPLL with a trace” approach [HD05a], which consists in using the trace of the
search of a constraint solver. Using various parameters for variable selection and
domain splitting of the solver, we can obtain different compiled forms.

Experimenting FSDs
We implemented a framework allowing one to handle all languages in the SD fam-
ily, including most tractable operations in the knowledge compilation map. We
implemented a “CHOCO with a trace” compiler, which is able to output FSDDs
or OSDDs, depending on the user’s choice. Our first experiments are promising:
going from FIAs to FSDs decreases memory space without increasing operation
duration. Moreover, compiling discrete problems into FSDDs or OSDDs seems
possible in practice, and handling the resulting compiled forms online is not an is-
sue. However, compilation time can be problematic for large problems. In addition,
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we only explored a little part of the possibilities of “CHOCO with a trace”; for in-
stance, we did not show the impact of variable choice or domain splitting heuristics
on the size of compiled forms.

Perspectives

A lot of work remains to be done about “CHOCO with a trace”. The framework
allows one to build FSDDs with variable repetition and no static order; using heuris-
tics for variable choice or domain splitting could possibly give rise to better results.
A possibility is to try to maximize the use of the cache: it can be done for example
by looking one step ahead and choosing the variable that minimizes the number of
new search nodes. As a side note, the question of the compilation of pure, non-
deterministic FSDs is left open—as is the case for pure DNNFs.

Further experimentation about planning with IAs and SDs includes the actual
building of a policy (e.g., using a strong planning as model-checking algorithm
[GT99]) and comparisons with more state-of-the-art languages.

From a theoretical point of view, our work also raised questions about represen-
tations: as we showed, any FIA can be transformed in polytime into an “equivalent”
FSD. To state this fact, we had to introduce a specific notion of equivalence, which
is different from the classical equivalence of Boolean functions. Indeed, variables
in the FIA and FSD framework are completely different; in a way, the equivalence
we defined is an “equivalence modulo some variable change”. Future work in-
cludes studies about such relations between different representation languages.
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APPENDIX

A

Benchmark Specifications

A.1 Drone problem

This problem deals with a competition drone having to achieve different goals on
a number of zones.

There are three different kinds of goal:

• identifying the target of a given zone, by doing “eight”-shaped flying maneu-
vers above it

• localizing the target in a given zone, by scanning it

• dropping a ball on the target of a given zone

Each zone contains at most one goal (thus, no target has to be both identified and
localized, for example). There is a special “home” zone where the drone takes off
and lands; it cannot land anywhere else without losing the competition.

Data

The following data define an instance of the problem. Let us begin with the integer
constants:

• an integer nbZones, the total number of zones;

• an integer nbZonesId, the total number of zones containing a target to iden-
tify;

• an integer nbZonesLoc, the total number of zones containing a target to lo-
calize;
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• an integer nbZonesDrop, the total number of zones containing a target to
touch;

• an integer nbBallsMax, the maximal number of balls that the drone can carry;

• an integer allottedTime, the number of minutes allotted to the mission;

• a sequence of integers ⟨zoneIdn⟩1⩽n⩽nbZonesId, all different and between 0
and nbZones− 1, representing the zones containing a target to identify;

• a sequence of integers ⟨zoneLocn⟩1⩽n⩽nbZonesLoc, all different and between 0
and nbZones− 1, representing the zones containing a target to localize;

• a sequence of integers ⟨zoneDropn⟩1⩽n⩽nbZonesDrop, all different and between
0 and nbZones− 1, representing the zones containing a target to touch;

Since each zone contains at most one target, it is obvious that nbZonesId +
nbZonesLoc+nbZonesDrop ⩽ nbZones, and that one integer cannot belong to two
distinct sequences. The next data are constants; their type (real or integer) depends
on the version of the benchmark—continuous or enumerated. They are defined as
follows:

• a value idDuration, the number of minutes necessary to identify a target;

• a value locDuration, the number of minutes necessary to localize a target;

• a value dropDuration, the number of minutes necessary to touch a target;

• a value toffDuration, the number of minutes necessary to take off;

• a value landDuration, the number of minutes necessary to land;

• a table of values ⟨gotoDurationi,j⟩1⩽i⩽nbZones,1⩽j⩽nbZones, indicating the time
(in minutes) necessary for the drone to go from zone i to zone j.

State Variables
State variables are the following:

• a Boolean flying indicating whether the drone is flying;

• an integer zone representing the zone it is in;

• an integer nbBalls, the number of remaining balls;

• a sequence of Boolean values ⟨goalAchn⟩0⩽n<nbZones, indicating for each
zone whether its corresponding goal has been achieved.

There is also a variable corresponding to the current number of remaining minutes,
remTime. This variable is real-valued or integer-valued depending on the version
of the problem.
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Action Variables
Action variables are the following:

• a Boolean value TOFF, true if the drone takes off;

• a Boolean value LAND, true if the drone lands;

• a Boolean value EIGHT, true if the drone identifies a target (making an
“eight” above);

• a Boolean value SCAN, true if the drone localizes a target (scanning the zone);

• a Boolean value DROP, true if the drone drops a ball;

• a Boolean value GOTO, true if the drone goes from a zone to another;

• an integer zoneGOTO, representing the zone to which the drone heads if
GOTO is true.

Preconditions

The set P (S,A) contains constraints deciding which decisions are possible in the
current state.

• The following constraint (⊕ being the “xor” operator),

TOFF⊕ LAND⊕ EIGHT⊕ SCAN⊕ DROP⊕ GOTO,

forbids that more than one decision be made at the same time.

• There cannot remain more time than the allotted time:[
remTime ⩽ allottedTime

]
.

• There cannot remain more balls than the maximum number of balls:[
nbBalls ⩽ nbBallsMax

]
.

• Precondition to the takeoff: the drone must be landed at home, and have
enough time to take off, i.e.,

TOFF →
([
zone = home

]
∧ ¬flying ∧

[
remTime ⩾ toffDuration

])
.

• Precondition to the landing: the drone must be flying at home, and have
enough time to land, i.e.,

LAND →
([
zone = home

]
∧ flying ∧

[
remTime ⩾ landDuration

])
.
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• Precondition to the identification: the drone must be flying and have enough
time, i.e.,

EIGHT →
(
flying ∧

[
remTime ⩾ idDuration

])
,

and it must be on a zone containing a target to identify, i.e.,

EIGHT →
[
zone ∈ {zoneId1, . . . , zoneIdnbZonesId}

]
.

• Precondition to the localization: the drone must be flying and have enough
time, i.e.,

SCAN →
(
flying ∧

[
remTime ⩾ locDuration

])
,

and it must be on a zone containing a target to localize, i.e.,

SCAN →
[
zone ∈ {zoneLoc1, . . . , zoneLocnbZonesLoc}

]
.

• Precondition to the dropping: the drone must be flying, have enough time,
and have enough balls, i.e.,

DROP →
(
flying ∧

[
remTime ⩾ dropDuration

]
∧
[
nbBalls > 0

])
,

and it must be on a zone containing a target to touch, i.e.,

DROP →
[
zone ∈ {zoneDrop1, . . . , zoneDropnbZonesDrop}

]
.

• Precondition to the moving: the drone must be flying and have enough time
to go to the specified zone, i.e.,

GOTO →
(
flying ∧

[
remTime ⩾ gotoDurationzone,zoneGOTO

])
.

Effects

The set E(S,A, S′) contains constraints indicating the resulting state, according
to the previous state and the action made. First, the following constraints describe
how the state changes when a given action is made.

• Effects of a takeoff: the drone is flying, and the duration of a takeoff has been
removed from the remaining time, i.e.,

TOFF →
(
flying′ ∧

[
remTime′ = remTime− toffDuration

])
.

• Effects of a landing: the drone is landed, and the duration of a landing has
been removed from the remaining time, i.e.,

LAND →
(
¬flying′ ∧

[
remTime′ = remTime− landDuration

])
.
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• Effects of an identification: the duration of an identification has been re-
moved from the remaining time, i.e.,

EIGHT →
[
remTime′ = remTime− idDuration

]
,

and the goal corresponding to this zone has been achieved, i.e.,

EIGHT → goalAch′zone.

• Effects of an localization: the duration of a localization has been removed
from the remaining time, i.e.,

SCAN →
[
remTime′ = remTime− locDuration

]
,

and the goal corresponding to this zone has been achieved, i.e.,

SCAN → goalAch′zone.

• Effects of a dropping: the drone has lost a ball, and the duration of a dropping
has been removed from the remaining time, i.e.,

DROP →
([
nbBalls′ = nbBalls− 1

]
∧
[
remTime′ = remTime− dropDuration

])
,

and goal corresponding to this zone has been achieved, i.e.,

DROP → goalAch′zone.

• Effects of a move: the drone is in the specified zone, and the duration of the
journey has been removed from the remaining time, i.e.,

GOTO →
([
zone′ = zoneGOTO

]
∧
[
remTime′ = remTime− gotoDurationzone,zoneGOTO

])
.

Conditions of a State Change

These constraints are also in E(S,A, S′), but they specify which decisions can
modify a given state variable.

• The flying state can only change when the drone takes off or lands:

¬
(
flying′ ↔ flying

)
→ (TOFF ∨ LAND) .

• The zone can only change when the drone moves:

¬
[
zone′ = zone

]
→ GOTO.
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• The number of balls can only change when the drone drops one:

¬
[
nbBalls′ = nbBalls

]
→ DROP.

• A goal can only be achieved if the corresponding decision has been made and
the drone is in the corresponding zone:

¬
(
goalAch′zone ↔ goalAchzone

)
→( (

EIGHT ∧
[
zone ∈ {zoneId1, . . . , zoneIdnbZonesId}

])
∨
(
SCAN ∧

[
zone ∈ {zoneLoc1, . . . , zoneLocnbZonesLoc}

])
∨
(
DROP ∧

[
zone ∈ {zoneDrop1, . . . , zoneDropnbZonesDrop}

]) )
.

• In zones containing no target, the goal is considered as achieved from the
beginning:([

zone ∈ {zoneId1, . . . , zoneIdnbZonesId}
]

∧
[
zone ∈ {zoneLoc1, . . . , zoneLocnbZonesLoc}

]
∧
[
zone ∈ {zoneDrop1, . . . , zoneDropnbZonesDrop}

])
→

(
goalAchzone ∧ goalAch′zone

)
.

Goal of the Mission
The goal of the mission is given by this constraint:

¬flying′ ∧
[
zone′ = home

]
∧

nbZones−1∧
k=0

goalAch′k.

At the end, the drone must be landed at home, and having achieved all zone goals.

A.2 Telecom

Data
The problem is defined by

• a set of reception channels, numbered from 1 to NR;

• a set of signal amplifiers, numbered from 1 to NA;

• a set of emission channels, numbered from 1 to NE ;
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• a set of paths numbered from 1 to NP ; each path p links a reception channel
R(p) ∈ [1, . . . , NR] to an emission channel E(p) ∈ [1, . . . , NE ] through an
amplifier A(p) ∈ [1, . . . , NA];

• a list Incomp of couples of distinct paths ⟨p, p′⟩ ∈ [1, . . . , NP ]× [1, . . . , NP ]
that are incompatible (that is, they use the same amplifier or the same emis-
sion channel).

State Variables
The state variables are the following:

• for each reception channel r ∈ [1, . . . , NR], a Boolean variable active(r)
indicating whether the channel is active;

• for each amplifier a ∈ [1, . . . , NA], a Boolean variable afail(a) indicating
whether the amplifier is out of order;

• for each emission channel e ∈ [1, . . . , NE ], a Boolean variable efail(a) indi-
cating whether the channel is out of order.

Decision Variables
The decision variables are as follows: to each reception channel r ∈ [1, . . . , NR]
corresponds a variable path(r) of domain [0, . . . , NP ], indicating the number of
the path associated with r (value 0 for channels associated with no path, such as
non-active channels).

Constraints
The path is 0 by default for non-active reception chanels, and each active reception
channel must be associated with a path:

∀r ∈ [1, . . . , NR], ¬active(r) ↔
[
path(r) = 0

]
.

The path used by an active reception channel r must start from r:

∀r ∈ [1, . . . , NR], active(r) →
[
R(path(r)) = r

]
.

Every active reception channel must be connected to a working emission chan-
nel, via a working amplifier:

∀r ∈ [1, . . . , NR], active(r) → ¬afail(A(path(r))),
∀r ∈ [1, . . . , NR], active(r) → ¬efail(E(path(r))).

Incompatible paths are not used at the same time:

∀⟨r, r′⟩ ∈ [1, . . . , NR]
2, ⟨path(r), path(r′)⟩ /∈ Incomp.
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