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Abstract

Valued decision diagrams (VDDs) are data structures that
represent functions mapping variable-value assignments to
non-negative real numbers. They prove useful to compile
cost functions, utility functions, or probability distributions.
While the complexity of some queries (notably optimiza-
tion) and transformations (notably conditioning) on VDD
languages has been known for some time, there remain many
significant queries and transformations, such as the various
kinds of cuts, marginalizations, and combinations, the com-
plexity of which has not been identified so far. This paper
contributes to filling this gap and completing previous results
about the time and space efficiency of VDD languages, thus
leading to a knowledge compilation map for real-valued func-
tions. Our results show that many tasks that are hard on val-
ued CSPs are actually tractable on VDDs.

1 Introduction
Valued decision diagrams (VDDs) are data structures that
represent multivariate functions f having a set V of valua-
tions (often a subset of R+) as codomain; such functions
are typically cost functions, utility functions, or probabil-
ity distributions, and as such, are considered in a number of
AI applications. Among the various tasks of interest when
dealing with such functions are optimization queries: find an
assignment of the variables leading to an optimal valuation;
find a value of a given variable that can be extended to an
optimal assignment; etc. Optimization queries are particu-
larly valuable when combined with the conditioning trans-
formation, which derives a representation of a restriction of
f obtained by assigning some of its variables. For instance,
the following task can be handled by combining optimiza-
tion with conditioning: in configuration problems, when f
represents a cost function mapping each assignment (say, a
car) to its price, output the cheapest car with seven seats; or,
when f represents a probability distribution linking diseases
to symptoms, return the most probable explanation (the most
probable disease given a set of symptoms).

Many other data structures have been defined for repre-
senting such multivariate functions f , valued CSPs (Schiex,
Fargier, and Verfaillie 1995), GAI nets (Bacchus and Grove
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1995), and Bayes nets (Pearl 1989) being among the best-
known. However, they are not adapted to the aforemen-
tioned requests when guaranteed response times are required
(as is the case in Web-based applications): optimization is
indeed NP-hard on CSPs, GAI nets, and Bayes nets.

Contrastingly, optimization is a tractable query on VDDs;
and conditioning is tractable as well. This explains why sev-
eral families of VDDs have been defined and studied in the
past twenty years. These include the language ADD of al-
gebraic decision diagrams (Bahar et al. 1993), the language
AADD of affine algebraic decision diagrams (Tafertshofer and
Pedram 1997; Sanner and McAllester 2005), and the lan-
guage SLDD of semiring-labeled decision diagrams (Wilson
2005). Actually, SLDD is itself a family of languages SLDD⊗,
parameterized by a binary operator ⊗, yielding in partic-
ular SLDD+, or equivalently EVBDD (Lai and Sastry 1992;
Lai, Pedram, and Vrudhula 1996; Amilhastre, Fargier, and
Marquis 2002), when ⊗ is +, and SLDD× when ⊗ is ×.

There nevertheless exist many queries and transforma-
tions of interest that do not amount to a combination of con-
ditioning and optimization. Consider for instance the fol-
lowing request: “tell me whether among the ‘cheap’ cars
(say, with a price lower than 10,000 euros) of this given
type, there is one that has seven seats”. It requires one to
focus on the set of ‘cheap’ cars, which is neither optimiza-
tion nor conditioning. Similarly, some transformations, such
as projection on variables of interest, or its dual, variable
elimination (e.g., forgetting or marginalization), also being
of tremendous value (e.g., to solve the “posterior marginal”
problem (PM) in Bayes nets), are not reducible to optimiza-
tion and conditioning. This is also the case of combination
transformations (a.k.a. ‘apply’ operations), which given the
representations of two functions f and g, compute a repre-
sentation of f � g, � being an associative and commutative
operator on V (e.g., addition or product when V = R

+).
Such transformations are very important, if only for incre-
mentally generating representations in a bottom-up way.

The knowledge compilation (KC) map (Darwiche and
Marquis 2002) identifies the complexity of requests (i.e.,
queries and transformations) over many propositional lan-
guages, as well as their relative succinctness. However, it
has been drawn for the specific case of Boolean functions;
although it has been extended in several directions, as of yet
no such map exists for the VDD languages. It has been



shown that AADD is strictly more succinct than ADD (San-
ner and McAllester 2005), and the succinctness picture has
later been completed (Fargier, Marquis, and Schmidt 2013):
AADD is strictly more succinct than both SLDD+ and SLDD×,
and both SLDD+ and SLDD× are in turn strictly more suc-
cinct than ADD. To complete the map, one now needs to
provide the set of requests that each language satisfies; in
order words, for each request, and for each language among
ADD, SLDD+, SLDD×, and AADD, to either find a polynomial-
time algorithm computing the request, or prove that no such
algorithm exists unless P = NP.

This is the main goal of this paper, which is organized as
follows. The next section presents the family of VDD lan-
guages, and the following one formally defines the queries
and transformations used. Then complexity results are pre-
sented,1 that establish whether each VDD language satisfies
each query or transformation. This paves the way for a KC
map for functions that are not essentially Boolean.

2 Valued Decision Diagrams
Preliminaries. Given a finite set X = {x1, . . . , xn} of
variables, each xi ranging over a finite domain Dxi , and any
set X ⊆ X , #—x = { 〈xi, di〉 | xi ∈ X, di ∈ Dxi } denotes
an assignment of the variables from X; DX is the set of all
such assignments (the Cartesian product of the domains of
the variables in X). The concatenation of two assignments
#—x and #—y of two disjoint subsets X and Y is an assignment
of X ∪ Y denoted #—x · #—y .

We consider functions f of variables from a subset
Scope(f) ⊆ X to some set V (this paper often assumes
V = R+). The domain of f is denoted as Df = DScope(f).
For any Z ⊆ Scope(f), f #—z denotes the restriction (or se-
mantic conditioning) of f by #—z , that is, the function on
Scope(f)\Z such that for any #—x ∈ DScope(f)\Z , f #—z ( #—x ) =
f( #—z · #—x ).

Given a binary operator � over V and two functions
f and g sharing the same scope, f � g is the func-
tion defined by f � g ( #—x ) = f( #—x ) � g( #—x ). The �-
projection of f on Z ⊆ Scope(f) is defined by f�,Z( #—x ) =⊙

#—y ∈DScope(f)\Z
f #—y ( #—x ).

Slightly abusing notations, if X and Y are two disjoint
sets of variables, Scope(f) = X , and #—x · #—y is an assignment
ofX∪Y , then we assume that f( #—x · #—y ) = f( #—x ); in practice,
we often consider complete assignments, i.e., #—x ∈ DX .

Given � a reflexive and transitive relation on V (i.e., a
preorder), of which we denote ∼ the symmetric part and
� the asymmetric part, we can define for any γ ∈ V the
following sets, referred to as “cuts”:

• CUTmax(f) = { #—x ∗ | ∀ #—x ,¬(f( #—x ) � f( #—x ∗)) };

• CUTmin(f) = { #—x ∗ | ∀ #—x ,¬(f( #—x ) ≺ f( #—x ∗)) };

• CUT�γ(f) = { #—x | f( #—x ) � γ }, and using similar defi-
nitions, CUT�γ(f) and CUT∼γ(f).

1For space reasons, proofs have been omitted from the pub-
lished version of the paper; this full version includes all proofs in
the appendix.

For instance, when optimizing is minimizing, CUTmin

is the set of optimal assignments (e.g., the cheapest cars);
CUT�γ is the set of assignments satisfying the cut condi-
tion (e.g., the ‘cheap’ cars – those with a price � γ).

A representation language over X w.r.t. a set V is a set of
data structures equipped with an interpretation function that
associates with each of them a mapping f : DX → V . This
mapping is called the semantics of the data structure, and the
data structure is a representation of the mapping.
Definition 2.1 (representation language; inspired from
Gogic et al. (1995)). Given a valuation set V , a rep-
resentation language L over X w.r.t. V , is a 4-tuple
〈CL,VarL, f

L, sL〉, where:
• CL is a set of data structures α (also referred to as L rep-

resentations or “formulæ”),
• VarL : CL → 2X is a scope function associating with each
L representation the subset of X it depends on,

• fL is an interpretation function associating with each L
representation α a mapping fLα from the set of all assign-
ments over VarL(α) to V ,

• sL is a size function from CL to N that provides the size
of any L representation.

Two formulæ (possibly from different languages) are equiv-
alent iff they have the same scope and semantics.

Valued decision diagrams. In the following, we consider
representation languages based on data structures called val-
ued decision diagrams: such diagrams target the representa-
tion of V-valued functions by allowing their arcs and nodes
to be labeled with values in some set E (generally, E = V ,
but as we will see, it is not always the case).
Definition 2.2 (valued decision diagram). A valued deci-
sion diagram (VDD) over X w.r.t. E is a finite rooted DAG
α, of which every internal node N is labeled with a variable
x ∈ X and has a set Out(N) of |Dx| outgoing arcs, each arc
a ∈ Out(N) being labeled with a distinct value v(a) ∈ Dx.
Arcs and leaves can be labeled with elements of E : ϕ(a)
(resp. ϕ(L)) denotes the label of arc a (resp. of leaf L).
The size of a decision diagram α, denoted |α|, is the size of
the graph (its number of nodes and arcs) plus the sizes of all
labels in it. VDD is the set of all valued decision diagrams.

In the following, we assume that the decision diagrams
are ordered, i.e., a total, strict ordering B over X is cho-
sen, and for each path from the root to a leaf in a VDD α,
the associated sequence of internal node labels is required
to be compatible w.r.t. this variable ordering (such diagrams
are thus read-once). A path from the root to a leaf of α
represents a (possibly partial) assignment of X . Note that
the structure is deterministic: an assignment #—x of X corre-
sponds to at most one path pα( #—x ) in α.

A VDD α is reduced iff it does not contain any (dis-
tinct) isomorphic nodes.2 A cache mechanism can be used

2Nodes N and M are isomorphic if they are labeled with the
same variable x, and there exists a bijection B from Out(N) onto
Out(M) such that ∀a ∈ Out(N), a and B(a) have the same end
node, share the same value of Dx, and ϕ(a) = ϕ(B(a)).



to merge isomorphic nodes on the fly; this is why we assume
in the following that the diagrams are reduced.

VDD languages. ADD, SLDD, and AADD are VDD lan-
guages, i.e., subsets of VDD. Each of them restricts the type
of diagrams used (e.g., ADD allows E-labels on leaves only),
and defines how the diagram is to be interpreted. ADD, SLDD,
and AADD thus differ syntactically (in the way diagrams are
labeled) and semantically (in the way they are interpreted).
Definition 2.3 (ADD). ADD is the 4-tuple 〈CADD, VarADD,
fADD, sADD〉 where CADD is the set of ordered VDDs α over
X such that leaves are labeled with elements of E = V (in
general, E = V = R+), the arcs are not labeled, and fADD is
defined inductively as follows, for every assignment #—x :
• if α is a leaf node L, then fADDα ( #—x ) = ϕ(L),
• otherwise, denoting N the root of α, x ∈ X its label,
d ∈ Dx such that 〈x, d〉 ∈ #—x , a = 〈N,M〉 the arc such
that v(a) = d, and β the ADD formula rooted at node M
in α, then fADDα ( #—x ) = fADDβ ( #—x ).

In the AADD framework of Sanner and McAllester (2005),
the co-domain of the represented functions is V = R+, but
only one (unlabeled) leaf is allowed and the arcs are labeled
with pairs of values fromR+ (i.e., E = R+ ×R+ 6= V).
Definition 2.4 (AADD). AADD is the 4-tuple 〈CAADD,VarAADD,
fAADD, sAADD〉 where CAADD is the set of ordered VDDs α over
X with a unique leaf L, and the arcs of which are labeled
with pairs 〈q, f〉 in R+ ×R+. For normalization purposes,
the root of α is also equipped with a pair 〈q0, f0〉 fromR+×
R

+ (the “offset”). The semantics of the resulting VDD is
given by, for every assignment #—x , fAADDα ( #—x ) = q0 + (f0 ×
gAADDα ( #—x )), where gAADDα is defined inductively as follows:
• if α is the leaf node L, then gAADDα ( #—x ) = 0,
• otherwise, denoting N the root of α, x ∈ X its label,
d ∈ Dx such that 〈x, d〉 ∈ #—x , a = 〈N,M〉 the arc such
that v(a) = d, ϕ(a) = 〈qa, fa〉, and β the formula rooted
at node M in α, then gAADDα ( #—x ) = qa + (fa × gAADDβ ( #—x )).

The AADD framework is equipped with a normaliza-
tion condition that makes (reduced) ordered AADD formulæ
canonical. Canonicity is important because it ensures a
unique representation for each subformula, which is a key
for efficiently recognizing and caching them.

In the SLDD⊗ framework (Wilson 2005),3 arcs (but not
leaves) are labeled with elements in E = V , and 〈E ,⊗, 1⊗〉
is assumed to be a commutative monoid: fSLDD⊗α ( #—x ) is the
aggregation by ⊗ of the labels of the arcs along pα( #—x ).
Definition 2.5 (SLDD⊗). Given a commutative monoid 〈E ,
⊗, 1⊗〉, SLDD⊗ is the 4-tuple 〈CSLDD⊗ , VarSLDD⊗ , f

SLDD⊗ ,
sSLDD⊗〉 where CSLDD⊗ is the set of ordered VDDs α over X
with a unique leaf L, such that ϕ(L) = 1⊗, and the arcs of
which are labeled with elements of E = V , and fSLDD⊗ is
defined inductively as follows: for every assignment #—x ,

3Note that our definition of SLDD differs from the original one in
two ways: (i) we consider only ordered diagrams; and (ii) we use
a commutative monoid instead of a commutative semiring, since
the second operation of the semiring does not take part in the data
structure (Fargier, Marquis, and Schmidt 2013).

• if α is the leaf node L, then fSLDD⊗α ( #—x ) = 1⊗,
• otherwise, denoting N the root of α, x ∈ X its label,
d ∈ Dx such that 〈x, d〉 ∈ #—x , a = 〈N,M〉 the arc such
that v(a) = d, and β the SLDD⊗ formula rooted at node
M in α, fSLDD⊗α ( #—x ) = ϕ(a)⊗ fSLDD⊗β ( #—x ).

We add to the root of α a value ϕ0 ∈ E (the “offset”). The
augmented interpretation function of α is fα,ϕ0

= ϕ0 ⊗ fα.

Two (ordered) monoids are particularly interesting,
namely 〈R+,+, 0〉 (we call the corresponding language
SLDD+) and 〈R+,×, 1〉 (we call the corresponding language
SLDD×). Both SLDD+ and SLDD× formulæ have a normaliza-
tion condition that provides these languages with the canon-
icity property; moreover, any SLDD+ or SLDD× formula can
be transformed in linear time into an equivalent AADD for-
mula. This also holds for the ADD language, targeting any of
the SLDD+, SLDD×, or AADD languages. Last, note that when
variables are Boolean and V = {0, 1}, any ADD, SLDD+,
SLDD×, or AADD formula can be transformed in linear time
into an equivalent OBDD, and (obviously) reciprocally.

3 Queries and Transformations
We now define many queries and transformations of interest
in the general framework of representation languages w.r.t.
V , that is, they are meaningful even when V 6= R+.

Definition 3.1 (queries). Let L denote a representation lan-
guage over X w.r.t. a set V totally ordered by some �.

• L satisfies optimization OPTmax (resp. OPTmin)
iff there exists a polynomial-time algorithm that
maps every L formula α to max #—x∈Df f

L
α( #—x ) (resp.

min #—x∈Df f
L
α( #—x )).

• L satisfies equivalence EQ iff there exists a polynomial-
time algorithm that maps every pair of L formulæ α and
β to 1 if fLα = fLβ , and to 0 otherwise.

• L satisfies sentential entailment SE iff there exists a
polynomial-time algorithm that maps every pair of L for-
mulæ α and β to 1 if ∀ #—x , fLα( #—x ) � fLβ( #—x ), and to 0 oth-
erwise.

• L satisfies partial upper (resp. lower, resp. level) consis-
tency CO�γ (resp CO�γ , resp. CO∼γ) iff there exists a
polynomial-time algorithm that maps every γ ∈ V and ev-
ery L formula α to 1 if ∃ #—x , fLα( #—x ) � γ (resp. fLα( #—x ) � γ,
resp. fLα( #—x ) ∼ γ) and to 0 otherwise.

• L satisfies partial upper (resp. lower, resp. level) valid-
ity VA�γ (resp VA�γ , resp. VA∼γ) iff there exists a
polynomial-time algorithm that maps every γ ∈ V and ev-
ery L formula α to 1 if ∀ #—x , fLα( #—x ) � γ (resp. fLα( #—x ) � γ,
resp. fLα( #—x ) ∼ γ) and to 0 otherwise.

• L satisfies max-model enumeration MEmax iff there ex-
ists a polynomial p and an algorithm that outputs, for ev-
ery L formula α, all the elements of CUTmax(fLα) in time
p(|α|, |CUTmax(fLα)|),

• L satisfies max-model counting CTmax iff there exists a
polynomial-time algorithm that outputs, for every L for-
mula α, the number of elements in CUTmax(fLα).



• L satisfies max-model extraction MXmax iff there exists
a polynomial-time algorithm that maps every L formula α
to an element #—x of CUTmax(fLα).

We define MEmin, ME�γ , ME�γ , ME∼γ (resp.
MXmin, MX�γ , MX�γ , MX∼γ ; resp. CTmin, CT�γ ,
CT�γ , CT∼γ) in the same way as MEmax (resp. MXmax;
resp. CTmax), using the sets CUTmin(fLα), CUT�γ(fLα),
CUT�γ(fLα), CUT∼γ(fLα) instead of CUTmax(fLα).

The MX and ME families of queries are crucial in
Bayesian reasoning and in interactive configuration. They
capture for instance the computation of a (the) most proba-
ble explanation(s) (MXmax), or cheapest configuration(s)
(MXmin); counting is also useful for such applications,
e.g., for characterizing the number of cars that are ‘cheap’
(CT�γ), or the number of diseases that are likely enough
to be considered (CT�γ). Other queries like consistency
and validity, as well as EQ and SE, are useful for many
reasoning problems (e.g., when pieces of information are
encoded into weighted knowledge bases); they extend the
corresponding queries defined for (Boolean) NNF formulæ.

Definition 3.2 (transformations). Let L denote a represen-
tation language over X w.r.t. V , and � an associative and
commutative binary operator over V .

• L satisfies conditioning CD iff there exists a polynomial-
time algorithm that maps every L formula α, every X ⊆
X , and every #—x ∈ DX to an L representation of fLα, #—x .

• L satisfies bounded�-combination�BC iff there exists a
polynomial-time algorithm that maps every pair of L for-
mulæ α and β to an L representation of fLα � fLβ .

• L satisfies �-combination �C iff there exists a
polynomial-time algorithm that maps every set of L for-
mulæ {α1, . . . , αn} to an L representation of

⊙n
i=1 f

L
αi .

• L satisfies variable (resp. single variable) �-elimination
�Elim (resp. S�Elim) iff there exists a polynomial-
time algorithm that maps every L formula α and every
subset X ⊆ X of variables (resp every singleton X ⊆ X )
to an L representation of

⊙
x∈X

⊙
#—x∈Dx f

L
α, #—x .

• L satisfies single bounded-variable �-elimination
SB�Elim iff there exists a polynomial p and an algo-
rithm that maps every L formula α and every x ∈ X to an
L representation of

⊙
#—x∈Dx f

L
α, #—x in time p(|α||Dx|).

• L satisfies single variable�-marginalization (�Marg) iff
there exists a polynomial-time algorithm that maps every
L formula α and every x ∈ X to an L representation of⊙

y∈X\{x}
⊙

#—y ∈Dy f
L
α, #—y .

• L satisfies γ-cut up CUT�γ , w.r.t. a preorder � on V , iff
there exists a polynomial-time algorithm that maps every
L formula α and every γ, a, b ∈ V such that a � b, to an
L representation of the function g defined by g( #—x ) = a if
#—x ∈ CUT�γ(fα), and g( #—x ) = b otherwise.

We define CUT�γ , CUT∼γ , CUTmax, and CUTmin in
the same way, from the sets CUT�γ(fα), CUT∼γ(fα),
CUTmax(fα), and CUTmin(fα), respectively.

The classical forgetting of variables corresponds to their
max-elimination. Single variable marginalization is equiva-
lent to the elimination of all variables but one. For instance,
sum-marginalization is important in Bayes nets for achiev-
ing the posterior marginal request (see Darwiche (2009));
and in configuration problems, the min-marginalization on
a variable in a VDD formula representing some price function
amounts to computing the minimal price associated with
each possible value of this variable (an option, in the car ex-
ample; see Astesana, Cosserat, and Fargier (2010)). Another
example is value iteration in stochastic planning, which can
be performed via a sequence of sum-eliminations and ×-
combinations on ADD formulæ (Hoey et al. 1999).

Finally, the family of cuts captures the restriction of the
function to the optimal assignments (e.g., the cheapest cars,
the most probable explanations) or to those that are good
enough (cars cheaper than γ euros, diseases with a probabil-
ity greater than γ). For generality, we defined this request
as a transformation within the language, but choosing a = 1
and b = 0 when V = R

+, cutting a VDD results in an
MDD; the MDD language (Srinivasan et al. 1990) is a direct
extension of OBDD to non-Boolean variables, and it satisfies
roughly the same queries and transformations as OBDD, e.g.,
CO, CD, SE, etc. (Amilhastre et al. 2012).

4 A KC Map for Ordered R+-VDDs
We can now draw the map of existing ordered VDD lan-
guages representing functions from X to R+, namely ADD,
SLDD×, SLDD+, and AADD. That is, we focus in the follow-
ing on V = R+, with� being the usual≥ order onR+, and
� ∈ {max,min,+,×}. We refrain from explicitly investi-
gating SLDDmax and SLDDmin, since it has been shown that
these languages are equivalent, up to a polynomial transfor-
mation, to ADD (Fargier, Marquis, and Schmidt 2013).

Each of the four languages satisfies CD: conditioning a
formula α by an assignment #—x can be achieved in linear
time using an algorithm similar to the OBDD one. Also, since
the representation of any function as a reduced ADD (resp.
reduced and normalized AADD, SLDD×, SLDD+) is unique,
and the reduction and normalization procedures of each lan-
guage are polynomial-time, EQ is satisfied by each of the
four languages. Finally, SE is satisfied by ADD, SLDD+, and
SLDD×, using a combination of cuts, inversion of labels, and
translation to MDD. Whether AADD satisfies SE remains open.

Proposition 4.1.
• ADD, SLDD+, SLDD×, and AADD satisfy EQ and CD.
• ADD, SLDD+, and SLDD× satisfy SE.

Let us now draw the KC map for the requests identified
in the previous section. We distinguish three classes of re-
quests: those related to optimization, that are tractable on
the VDD languages; those related to cutting with respect to
some threshold γ, that may become harder; and the combi-
nation and projection transformations.

Requests related to optimization tasks. The results we
obtained are summarized in Table 1. As already mentioned,
OPTmax and OPTmin have been shown to be tractable for



Table 1: Results about basic queries, optimization, and γ-
cutting;

√
means “satisfies”, • means “does not satisfy”,

and ◦ means “does not satisfy unless P = NP”. Results for
additive valued constraint satisfaction problems (VCSP+) are
given here as a baseline.

Query ADD SLDD+ SLDD× AADD VCSP+

CD
√ √ √ √ √

EQ
√ √ √ √

?
SE

√ √ √
? ◦

OPTmax / OPTmin
√ √ √ √

◦
CTmax / CTmin

√ √ √ √
◦

MEmax / MEmin
√ √ √ √

◦
MXmax / MXmin

√ √ √ √
◦

CUTmax / CUTmin
√ √ √ √

?
VA∼γ

√ √ √ √
?

VA�γ / VA�γ
√ √ √ √

◦
CO∼γ

√
◦ ◦ ◦ ◦

CO�γ / CO�γ
√ √ √ √

◦
ME∼γ

√
◦ ◦ ◦ ◦

ME�γ / ME�γ
√ √ √ √

◦
MX∼γ

√
◦ ◦ ◦ ◦

MX�γ / MX�γ
√ √ √ √

◦
CUT∼γ

√
◦ ◦ ◦ ?

CUT�γ / CUT�γ
√

• • • ?
CT∼γ

√
◦ ◦ ◦ ◦

CT�γ / CT�γ
√

◦ ◦ ◦ ◦

normalized AADD formulæ (Sanner and McAllester 2005),
for SLDD formulæ (Wilson 2005), and their satisfaction is
obvious for ADD. All tractability results of Table 1 can be
related to the fact that (i) VDDs are circuit-free graphs,
and (ii) the aggregation of the ϕ values is monotonic in the
classes considered. In such diagrams, minimal (resp. max-
imal) paths can be obtained in polynomial time, thanks to
a shortest (resp. longest) path algorithm; this is the basis
for a polynomial-time procedure that builds an MDD formula
representing the optimal assignments, and hence implies the
satisfaction of CUTmax and CUTmin.

Proposition 4.2. ADD, SLDD+, SLDD×, and AADD sat-
isfy OPTmax, OPTmin, CUTmax, CUTmin, MEmax,
MEmin, MXmax, MXmin, CTmax, and CTmin.

Requests related to γ-cuts. Requests related to pure opti-
mization are easy to solve. However, optimization alone is
not sufficient for many applications; for instance, a customer
looking for a car is not always interested in finding out one of
the cheapest cars: a ‘cheap’ car (i.e., with a cost lower than a
given threshold) may be more interesting than the cheapest
ones if it fulfills other desiderata of the customer. Hence the
importance of requests related to γ-cuts.

Fortunately, comparing the maximal (resp. minimal)
value of fLα (which can be computed in polynomial time)
to some γ ∈ V is enough to decide whether there exists an
#—x such that fLα( #—x ) � γ (resp. � γ). Similarly, deciding the
γ-validity of a formula α only requires the comparison of γ
to the maximal (resp. minimal) value of fLα.

Proposition 4.3. ADD, SLDD+, SLDD×, and AADD satisfy
CO�γ , VA�γ , CO�γ , VA�γ , and VA∼γ .

Although checking that there is an assignment that leads
to a valuation greater than or equal to γ is polynomial, de-
ciding whether there exists an assignment leading exactly to
γ is not tractable for SLDD+, SLDD×, and AADD. The proof
is based on a polynomial reduction from the SUBSET SUM
decision problem (Garey and Johnson 1979).
Proposition 4.4. SLDD+, SLDD×, and AADD do not satisfy
CO∼γ unless P = NP.

It is quite clear that the satisfaction of MX∼γ or CT∼γ
is a sufficient condition to that of CO∼γ ; and this holds in
all generality, not only for our four R+-valued languages.
Similarly, it can be shown that ME∼γ is a sufficient condi-
tion for CO∼γ , and that CUT∼γ implies MX∼γ as long
as one of the MX queries is satisfied.
Proposition 4.5. Let L be a representation language over X
w.r.t. V , where V is totally ordered by a relation �.

• If L satisfies both CUT∼γ and one of the MX queries,
then it satisfies MX∼γ .

• If L satisfies MX∼γ , CT∼γ , or ME∼γ , then it satisfies
CO∼γ .

Corollary 4.6. SLDD+, SLDD×, and AADD do not satisfy
MX∼γ , CUT∼γ , CT∼γ , or ME∼γ unless P = NP.

Thus, except for VA∼γ , queries about a precise cut of the
function represented by an arc-labeled (in the wide sense)
VDD are intractable. The situation is more nuanced when
lower and upper cuts are considered instead.
Proposition 4.7. Let L ∈ {SLDD+, SLDD×, AADD}.
• L satisfies ME�γ , ME�γ , MX�γ , and MX�γ .
• L does not satisfy CT�γ or CT�γ unless P = NP.
• L does not satisfy CUT�γ or CUT�γ .

For proving the first item, the basic idea is that from any
node of a normalized AADD formula, there is a path to the
leaf that has value 1, and a path to the leaf that has value 0.
A path from the root to this node gives it an offset, gathered
from its arcs, say 〈p, q〉. Hence we can enumerate all paths,
without exploring nodes for which p + q < γ for ME�γ
(resp. p > γ for ME�γ).

The proof of the next item comes from that fact that if
CT�γ held, then we could count the assignments #—x such
that fα( #—x ) ≥ γ, and also those for which fα( #—x ) > γ;
that is, we could satisfy CT∼γ , which has been shown in-
tractable (and similarly for CT�γ).

The intractability of CUT�γ or CUT�γ is uncondi-
tional, and the proofs are trickier. For the specific case of
CUT�γ on SLDD+, the proof uses the fact that the function
f( #—y · #—z ) =

∑n
i=1 yi · 2n−i +

∑n
i=1 zi · 2n−i can be repre-

sented as an SLDD+ formula of 2n+ 1 nodes only, using the
variable ordering y1C · · ·CynCz1C · · ·Czn, whereas there
is no polynomial-size OBDDC representation of the function
returning 1 when f( #—y · #—z ) ≥ 2n and 0 otherwise. The other
proofs are similar, using well-chosen functions instead of f .

These results about AADD and SLDD contrast with the case
of ADD, which satisfies each CUT transformation (γ-cuts



are obtained thanks to a simple leaf-merging procedure), and
thus satisfies each of the MX, ME, CT, and CO queries.

Combination, variable elimination, marginalization.
None of the VDD languages considered in this paper sat-
isfies the unbounded combination or unbounded variable
elimination transformations; this result is not very surpris-
ing, observing that (i) unbounded disjunctive combination
(∨C) and forgetting (FO) are not satisfied by OBDD; (ii) any
OBDD formula can be viewed as an ADD formula, and thus be
translated in polynomial time into an SLDD+ (resp. SLDD×,
AADD) formula; and (iii) the disjunction of several OBDD for-
mulæ amounts to cutting their +-combination at the minimal
level (CUTmin is satisfied): by construction, the counter-
models of the disjunction are the #—x such that ϕ( #—x ) = 0,
so the resulting formula can be viewed as an OBDD for-
mula the negation of which is equivalent to the disjunc-
tion of the original formulæ). The other proofs are based
on similar arguments. Note that contrary to the OBDD case,
even �-eliminating a single variable is hard (roughly speak-
ing, the �-combination of two formulæ can be built by �-
eliminating an additional variable).

Proposition 4.8. For any L ∈ {ADD, SLDD+, SLDD×, AADD}
and any � ∈ {max,min,+,×}, L does not satisfy �C,
�Elim, or S�Elim.

More difficult is the question of bounded combination.
An extension of “apply” algorithm of Bryant (1986), which
is polynomial-time on OBDD structures for the AND and OR
operators, has been proposed (Sanner and McAllester 2005)
to compute the combination (e.g., by +, ×, max, min) of
two AADD formulæ; it can be easily adapted to the other VDD
languages considered in this paper. However, the complexity
of this “apply” algorithm had not been formally identified.
One of the main results of this paper is that bounded com-
binations are not tractable for AADD, which implies that the
extended “apply” is not a polynomial-time algorithm.

Proposition 4.9.
• SLDD+, SLDD×, and AADD do not satisfy maxBC,

minBC, SBmaxElim, or SBminElim.
• SLDD× and AADD do not satisfy +BC or SB+Elim.
• SLDD+ and AADD do not satisfy ×BC or SB×Elim.

The difficulty of maxBC or minBC comes from that of
CUT�γand CUT�γ . We show the difficulty of ×BC by
considering the two following functions on Boolean vari-
ables: f( #—x ) =

∑n−1
i=0 xi · 2i (representation of an in-

teger by a bitvector) and g( #—x ) = 2n+1 − f( #—x ); each
can be represented as an SLDD+ formula (with ordering
x0 C x1 C · · ·C xn−1) with n+ 1 nodes and 2n arcs. Then
we can show that the SLDD+ representation of f × g (using
the same variable ordering) contains an exponential number
of terminal arcs, even if all nodes at the last level have been
normalized; this proves that each ordered SLDD+ represen-
tation of f × g is of exponential size. The other proofs are
similar, using well-chosen functions f and g.

There are actually only two cases in which bounded com-
binations are tractable: when the language considered is

Table 2: Results about transformations (legend in Table 1).

Transformation ADD SLDD+ SLDD× AADD

maxBC / minBC
√

• • •
+BC

√ √
• •

×BC
√

•
√

•
maxC / minC • • • •

+C /×C • • • •

maxElim / minElim • • • •
+Elim /×Elim • • • •

SmaxElim / SminElim • • • •
S+Elim / S×Elim • • • •

SBmaxElim / SBminElim
√

• • •
SB+Elim

√ √
• •

SB×Elim
√

•
√

•

maxMarg / minMarg
√ √ √ √

+Marg
√ √ √ √

×Marg
√

?
√

?

ADD, and when the combination operator is also the one that
aggregates arc values in the language considered (i.e., ad-
dition for SLDD+, and product for SLDD×). In these cases,
it is also polynomial to eliminate a single variable with a
bounded domain, by definition of variable elimination.
Proposition 4.10.
• SLDD+ satisfies +BC and SB+Elim.
• SLDD× satisfies ×BC and SB×Elim.
• ADD satisfies �BC and SB�Elim, for any operation
� ∈ {×,+,min,max}.
Finally, we have proved that ×-marginalization is

tractable for ADD and SLDD×, and that max-marginalization,
min-marginalization and +-marginalization are tractable for
all languages considered. Whether AADD and SLDD+ satisfy
×-marginalization remains an open question.

5 Conclusion
In this paper, we presented a complexity analysis of VDD lan-
guages, based on a set of queries and transformations of in-
terest. Requests related to optimization appear as tractable
for all VDD languages, as well as additive marginalization
and some of the queries related to cutting. Cutting queries
prove computationally difficult when a level γ is has to be
reached exactly, and this is also the case for the transforma-
tions we considered. One of the main results of the paper
is that bounded combinations are not tractable on VDD lan-
guages, which implies that no “apply” algorithm can run in
polynomial time on AADD formulæ in the general case (this
is the case even for simple “Boolean-style” operations such
as min and max). When bounded additive (resp. multiplica-
tive) combination is required to be achieved efficiently, the
time/space tradeoff offered by SLDD+ (resp. SLDD×) is valu-
able. Finally, it turns out that the complexity of the vari-
ous queries related to optimization is better for the VDD lan-
guages than for other languages dedicated to the representa-
tion of non-Boolean functions, such as VCSP+ (and similar
results are expected for GAI nets or Bayes nets, for which
optimization is also hard).
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Appendix: Proofs
Preliminaries
We first introduce a couple of technical propositions that are
only evoked in the main text, for space reasons, but are use-
ful for proving the following results. For simplicity, we of-
ten consider that the offset of SLDD and AADD formulæ is
the valuation of a pseudo-arc pointing to the root, called the
“offset-arc”.

Proposition A.1. Any VDD formula can be turned in poly-
nomial time into an equivalent reduced formula in the same
language.

Proof. The proof is straightforwardly adapted from the
well-known bottom-up reduction algorithm of OBDD (Bryant
1986). The goal of the reduction procedure is to merge the
isomorphic nodes (two nodesN andN ′ in a VDD formula are
isomorphic when they are leaf nodes with the same label, or
when they are internal nodes labeled with the same variable
x, have the same number k of outgoing arcs a1, . . . , ak and
a′1, . . . , a

′
k and for each i ∈ {1, . . . , k}, v(ai) = v(a′i) and

ϕ(ai) = ϕ(a′i)) and to remove the redundant nodes (an in-
ternal node N is redundant in a VDD formula when it has a
single child M and every arc from N to M has the same ϕ-
label). It simply traverses the diagram while maintaining a
cache of already encountered nodes, recording their variable
and the label, value, and destination of each of their outgo-
ing arcs. When it finds a node N that is isomorphic to some
node N ′ in the cache, it removes the duplicate N , redirect-
ing all incoming arcs to N ′. When it finds a node N with
all outoing arcs pointing to the same node M and having the
same valuation, it removesN and redirects its incoming arcs
to M , updating their valuations accordingly (this update op-
eration depends on the language under consideration).

Definition A.2. An AADD formula α is normalized if and
only if



Algorithm 1: NormalizeAADD(α)

input : an AADD formula α
output: a normalized AADD formula equivalent to α

1 foreach arc a pointing to the leaf do fa ..= 0
2 foreach non-leaf node N of α in reverse topological

ordering do
3 qmin ..= mina∈Out(N) qa
4 range ..= maxa∈Out(N)(qa + fa)− qmin
5 foreach a′ ∈ In(N) do
6 qa′ ..= qa′ + qmin × fa′
7 fa′ ..= fa′ × range
8 if fa′ = 0 then
9 redirect a′ to the leaf

10 if range = 0 then
11 remove N and its outgoing arcs (the incoming

arcs have been redirected)
12 else
13 foreach a ∈ Out(N) do
14 qa ..= (qa − qmin)/range
15 fa ..= fa/range

16 return α

• for each node N in α, mina∈Out(N) qa = 0;
• for each node N in α, maxa∈Out(N)(qa + fa) = 1;
• for any arc a (including the offset-arc), fa = 0 if and only

if a points to the leaf.
Proposition A.3. There exists a linear algorithm transform-
ing any AADD formula into an equivalent normalized AADD
formula.

Proof. The backward normalization procedure of AADD is
outlined in Algorithm 1 (note that the offset-arc is consid-
ered as a normal arc, pointing to the root). It should be
clear that (i) the processing of each node leaves its seman-
tics identical (modifications of outgoing arcs are reported on
incoming arcs); (ii) each node is modified so as to obey the
normalization conditions; and (iii) each arc is modified at
most two times, so the procedure is linear in the number of
arcs in α.

Definition A.4. An SLDD+ (resp. SLDD×) formula α is
normalized if and only if each node N in α verifies
mina∈Out(N) ϕ(a) = 0 (resp. maxa∈Out(N) ϕ(a) = 1).
Proposition A.5. There exists a linear algorithm transform-
ing any SLDD+ (resp. SLDD×) formula into an equivalent
normalized SLDD+ (resp. SLDD×) formula.

Proof. The backward normalization procedure for SLDD+

and SLDD× is outlined in Algorithm 2 (note that the offset-
arc is considered as a normal arc, pointing to the root).

There is no normalization condition for ADD; to simplify
the statement of the following proposition, we implicitly
consider that a “normalized ADD formula” is simply an ADD
formula.

Algorithm 2: NormalizeSLDD(α)

input : an SLDD formula α
output: a normalized SLDD formula equivalent to α
// For SLDD+, let ⊗ be +, ⊗−1 be −, and proj be min
// For SLDD×, let ⊗ be ×, ⊗−1 be ÷, and proj be max

1 foreach non-leaf node N of α in reverse topological
ordering do

2 ϕm ..= proja∈Out(N) ϕ(a)

// Rem: when proj is max
// ϕm = 0 iff ∀a, ϕ(a) = 0

3 foreach a ∈ Out(N) do
4 if ϕ(a) = ϕm then
5 ϕ(a) ..= 1⊗
6 else ϕ(a) ..= ϕ(a)⊗−1 ϕm
7

8 foreach a ∈ In(N) do
9 ϕ(a) ..= ϕ(a)⊗ ϕm

10 return α

Proposition A.6. For any L ∈ {ADD, SLDD+, SLDD×, AADD}
formula α,

• there is a unique (up to isomorphism) reduced and nor-
malized L representation α′ of fLα;

• no L representation of fLα can be smaller than |α′|.

Proof. This has been proven by Bahar et al. (1993) for
ADD, Wilson (2005) for SLDD+ and SLDD×, and Sanner and
McAllester (2005) for AADD.

Proposition A.7. Denoting L ≥` L′ the fact that there exists
a linear-time algorithm that associates with any L formula
an equivalent L′ formula, the following results hold:

• ADD ≥` SLDD+ ≥` AADD;
• ADD ≥` SLDD× ≥` AADD.

Proof.

• SLDD+ ≥` AADD, SLDD× ≥` AADD: Because any SLDD+

(resp. SLDD×) representation of a function f can be trans-
formed in linear time into an AADD representation α of the
same function: for each arc a (including the offset-arc),
its valuationϕ(a) becomes 〈ϕ(a), 1〉 (resp. 〈0, ϕ(a)〉); the
initial offset of α is 〈q0, 1〉.

• ADD ≥` SLDD×, ADD ≥` SLDD+, ADD ≥` AADD: any ADD
representation of a function f can be transformed in linear
time into an SLDD+ (resp. SLDD×, resp. AADD) represen-
tation of the same function; the transformation process
is as follows: each arc a entering a terminal node N re-
ceives the valuation ϕ(a) = ϕ(N) (resp. ϕ(a) = ϕ(N),
resp. 〈ϕ(N), 0〉); the other arcs are labeled with the neu-
tral element of the language considered (0 for SLDD+, 1
for SLDD×, 〈0, 1〉 for AADD); the labels of the terminal
nodes are deleted and those nodes are merged so as to be-
come the leaf of the resulting VDD formula. The offset is
0 (resp. 1, resp. 〈0, 1〉).



Proposition A.8. Any ADD, SLDD+, SLDD×, or AADD repre-
sentation of a function taking its values in V = {0, 1} can
be translated in polynomial time into an MDD representation
of the same function.

Proof. We will show the result for AADD; the others can
be inferred from it, since any formula in one of these lan-
guages can be transformed in linear time into an equiva-
lent AADD formula (Proposition A.7). Note however that
the result is actually obvious for the ADD language: when
V = E = {0, 1}, ADD = MDD.

Any AADD formula can be normalized in linear time
(Proposition A.3). Let α be a normalized AADD represen-
tation of a function taking its values in V = {0, 1}. When
α has no non-leaf node, it represents a constant function, so
the translation to MDD is trivial. Suppose α contains at least
one non-leaf node; we show by induction that all arcs that do
not point to the leaf (including the offset-arc) have valuation
〈0, 1〉.

Suppose that this is true for all arcs on some path from the
offset-arc to a node N . Let a ∈ Out(N) be an arc that does
not point to the leaf. Denoting M the destination node of
a, the normalization condition also ensures that there exists
one path fromM to the leaf that has value 0, and another that
has value 1. All in all, there exists a complete path of value
qa and another complete path of value qa + fa; these two
values must be equal to 0 or 1. Since by the normalization
condition, fa 6= 0, the only possibility is that qa = 0 and
fa = 1. This reasoning clearly applies to the offset arc, so
by induction, all arcs not pointing to the leaf have valuation
〈0, 1〉.

Now, let a be an arc pointing to the leaf. By the normal-
ization condition, fa = 0. Any complete path traversing a
has value qa (recall that along any path, all arcs except the
last one have valuation 〈0, 1〉), so qa is either 0 or 1.

The conversion to MDD is thus direct: create a new leaf
labeled with 1, redirect the 〈1, 0〉 arcs to this new leaf, and
remove all the arc valuations.

Queries
Proposition A.9. ADD, SLDD+, SLDD×, and AADD satisfy
EQ.

Proof. This query is satisfied since each language L in
{ADD, SLDD+, SLDD×, AADD} offers the canonicity property,
i.e., any function has a unique reduced, normalized L repre-
sentation given a fixed variable ordering (Proposition A.6),
and since normalizing and reducing an L formula can be
done in linear time (Proposition A.1 for the reduction,
Proposition A.3 for the normalization of AADD, and Proposi-
tion A.5 for the normalization of SLDD).

Proposition A.10. ADD, SLDD+, SLDD×, and AADD satisfy
CD.

Proof. We first show that single variable conditioning is in
linear time on VDD formulæ. Assume that the conditioning
of α by x = v is asked for. For any node N labeled with x,
the arcs in Out(N) corresponding to a value different from v

must be discarded to get a VDD representation of the restric-
tion fα,〈x,v〉 of fα. Because VDD formulæ are deterministic,
there is only one arc a in Out(N) corresponding to value v.

In order to derive a VDD representation of fα,〈x,v〉, each
arc b in In(N) has to be redirected to the destination node
of a and its label must be updated to take account of the
removal of a. This update depends on the language consid-
ered: for ADD, there is nothing to do; for AADD, the label
〈qb, fb〉 of b must be replaced by 〈qb + fb× qa, fb× fa〉; for
SLDD+ (resp. SLDD×), the label ϕb of b must be replaced by
ϕb + ϕa (resp. ϕb × ϕa).

Accordingly, single variable conditioning can be achieved
in time linear in the size of α, and the resulting formula has
strictly fewer nodes and arcs that α (each node processing
removes |Dx| − 1 arcs). Full conditioning simply amounts
to iterating single variable conditioning for each conditioned
variable, thus it runs in time polynomial in the input size.

Proposition A.11. ADD satisfies CUT∼γ , CUT�γ , and
CUT�γ .

Proof. This is trivial, because the values taken by a function
are listed as the leaves of its ADD representation. Hence,
CUT∼γ (resp. CUT�γ , CUT�γ) is the set of assignments
the paths of which lead to a leaf with value ϕ = γ (resp.
ϕ ≤ γ, ϕ ≥ γ). Replacing the label of every such leaf
by a and that of all other leaves by b, which can be done
in time linear in the size of the formula, we obtain an ADD
representation of the function g defined by g( #—x ) = a if #—x is
in the cut and g( #—x ) = b otherwise.

Corollary A.12. ADD satisfies

• CO∼γ , CO�γ , and CO�γ;
• VA∼γ , VA�γ , and VA�γ;
• ME∼γ , ME�γ , and ME�γ;
• MX∼γ , MX�γ , and MX�γ;
• CT∼γ , CT�γ , and CT�γ .

Proof. This comes directly from the previous result: ADD
satisfies CUT∼γ (resp. CUT�γ ; resp. CUT�γ), so an
ADD formula α can be turned in polynomial time into an ADD
formula β such that fβ( #—x ) = 1 if #—x is in CUT∼γ(fα) (resp.
CUT�γ(fα); resp. CUT�γ(fα)) and 0 otherwise (we sim-
ply take a = 1 and b = 0). Thanks to Proposition A.8, β can
be turned in polynomial time into an equivalent MDD formula.
Since MDD satisfies the consistency, validity, model enumer-
ation, model extraction, and model counting queries (Amil-
hastre et al. 2012), this proves that ADD satisfies CO∼γ ,
VA∼γ , ME∼γ , MX∼γ , and CT∼γ (resp. CO�γ , VA�γ ,
ME�γ , MX�γ , and CT�γ ; resp. CO�γ , VA�γ , ME�γ ,
MX�γ , and CT�γ).

Proposition A.13. ADD, SLDD+, SLDD×, and AADD satisfy
OPTmax and OPTmin.

Proof. The satisfaction of OPTmax and OPTmin by AADD
is due to Sanner and McAllester (2005); they showed that the
maximal (resp. minimal) value reached by fAADDα is q0 + f0



(resp. q0), where 〈q0, f0〉 is the offset of α (assumed to
be normalized). Then the satisfaction of OPTmax and
OPTmin by ADD,4 SLDD+, and SLDD×

5 is a consequence
of Proposition A.7.

Proposition A.14. ADD, SLDD+, SLDD×, and AADD satisfy
CUTmax and CUTmin.

Proof. Let us recall that, for any normalized AADD repre-
sentation α, the assignments #—x such that fAADDα ( #—x ) is max-
imal correspond to the paths following only the arcs e such
that qe + fe = 1 (they always exist when α is normal-
ized). It is then possible to get an ADD representation of
CUTmax(fAADDα ) by replacing the leaf with a new one la-
beled with a (the a-node) and creating a second leaf la-
beled with b (the b-node): the arcs such that qe + fe 6= 1
are then redirected to the b-node (this is done in time linear
in the number of arcs). The structure is cleaned by recur-
sively deleting nodes without incoming arcs; this cleaning
process is also in linear time. The procedure is thus a poly-
nomial algorithm transforming an AADD formula α into an
ADD representation of CUTmax(fAADDα ). This algorithm al-
low us to conclude about CUTmax for all four languages,
thanks to Proposition A.7: since ADD ≥` AADD, AADD satis-
fies CUTmax (we can transform the resulting ADD formula
into AADD) and ADD too (we can transform the initial for-
mula into AADD, and keep the resulting ADD formula); SLDD+

(resp. SLDD×) satisfies CUTmax because SLDD+ ≥` AADD
(resp. SLDD× ≥` AADD), which allows us to “prepare” the
formula to use the algorithm, and ADD ≥` SLDD+ (resp.
ADD ≥` SLDD×), which allows us to translate the result into
the targeted language.

The proof is similar for CUTmin, since for any normal-
ized AADD representation α, the assignments #—x such that
fAADDα ( #—x ) is minimal correspond to the paths following only
the arcs e such that qe = 0 (they always exist when α is nor-
malized). The leaf becomes the a-node and the arcs e such
that qe 6= 0 are redirected to the b-node.

Corollary A.15. ADD, SLDD+, SLDD×, and AADD satisfy
MEmax, MEmin, MXmax, MXmin, CTmax, CTmin.

Proof. This comes directly from the previous result: for
any L ∈ {ADD, SLDD×, SLDD+, AADD}, L satisfies CUTmax

(resp. CUTmin), so an L formula can be turned in polyno-
mial time into an L formula α such that fLα( #—x ) = 1 if #—x
is a maximal (resp. minimal) value of fLα, and 0 otherwise
(we simply take a = 1 and b = 0). Thanks to Proposi-
tion A.8, α can be turned in polynomial time into an equiv-
alent MDD formula. Since MDD satisfies the model enumer-
ation, model counting, and model extraction queries, this

4The satisfaction of OPTmax and OPTmin by ADD is obvi-
ous (just explore the terminal nodes to get the maximal or minimal
value labeling one of them).

5For SLDD+ and SLDD×, our result also coheres with that
of Wilson (2005), despite the fact that (R+,min,+) and
(R+,max,+) are not semirings. Indeed, this does not matter, the
important point being the addition-is-max (or addition-is-min) as-
sumption. See the original paper from Wilson (2005) for details.

proves that L satisfies MEmax, CTmax, and MXmax (resp.
MEmin, CTmin, and MXmin).

Proposition A.16. SLDD+, SLDD×, and AADD satisfy
CO�γ , VA�γ , CO�γ , VA�γ .

Proof. • To determine whether there exists an #—x such that
fLα( #—x ) ≥ γ (resp. fLα( #—x ) ≤ γ), it is sufficient to com-
pute the maximal (resp. minimal) value v∗ (resp. v∗)
reached by fLα; this can be done in polynomial time since
OPTmax (resp. OPTmin) is satisfied by all three lan-
guages (Proposition A.13). Then it is enough to compare
this value to γ, since ∃ #—x , fLα( #—x ) ≥ γ ⇐⇒ v∗ ≥ γ
(resp. ∃ #—x , fLα( #—x ) ≤ γ ⇐⇒ v∗ ≤ γ).

• To determine whether all the #—x are such that fLα( #—x ) ≥ γ
(resp. fLα( #—x ) ≤ γ), it is sufficient to compute the min-
imal (resp. maximal) value v∗ (resp. v∗) reached by fLα;
this can be done in polynomial time since OPTmin (resp.
OPTmax) is satisfied by all three languages. Then it is
enough to compare this value to γ, since it holds that
∀ #—x , fLα( #—x ) ≥ γ ⇐⇒ v∗ ≥ γ (resp. ∀ #—xfLα( #—x ) ≤
γ ⇐⇒ v∗ ≤ γ).

Corollary A.17. SLDD+, SLDD×, and AADD satisfy VA∼γ .

Proof. Checking whether all the #—x are such that fLα( #—x ) = γ
is equivalent to checking whether for each #—x , both fLα( #—x ) ≥
γ and fLα( #—x ) ≤ γ hold. Since all three languages satisfy
both VA�γ and VA�γ (Proposition A.16), they also satisfy
VA∼γ . Note that this proof does not work for CO∼γ .

Proposition A.18. SLDD+, SLDD×, and AADD do not satisfy
CO∼γ , unless P = NP.

Proof. We first show that SLDD+ does not satisfy
CO∼γunless P = NP. This follows from Hadzic and An-
dersen (2006, Theorem 3), by reduction of SUBSET SUM
(given a set of integers E = {i1, . . . , in} of cardinality n
and an integer k, is there a subset of E summing to k?)
which is NP-complete (Garey and Johnson 1979) even if all
the integers in E are positive.

Let us associate with E in polynomial time an SLDD+ for-
mula αE over a set X = {x1, . . . , xn} of n Boolean vari-
ables as follows (see Figure 1): the root of αE is labeled with
x1, αE contains n internal nodes respectively labeled with
x1, . . . , xn plus one leaf; for each ij of E, we build two arcs
ej and e′j in αE from the xj node to the xj+1 node (or to the
leaf when j = n): ej corresponds to xj = 0 and ϕ(ej) = 0;
e′j corresponds to xj = 1 and ϕ(e′j) = ij . This construction
is done in time linear in |E|. Each #—x (and thus each path in
α) is in bijection with a subset of E and fSLDD+α ( #—x ) is equal
to the sum of the elements in this subset.

x1 x2 x3 xn 0

i1

0

i2

0

in

0

Figure 1: The SLDD+ formula αE



If SLDD+ satisfied CO∼γ , then it would be possible to
check in polynomial time whether there exists a subset of
E summing to k – i.e., to solve the SUBSET SUM problem.
Hence SLDD+ does not satisfy CO∼γ , unless P = NP.

Now, a similar construction holds for the SLDD× lan-
guage, by considering the SUBSET PRODUCT problem
(given a set of integers E = {i1, . . . , in} of cardinality
n and an integer k, is there a subset whose product is k?)
which is NP-complete as well (Garey and Johnson 1979).

Finally, if AADD satisfied CO∼γ , then SLDD+ also would,
since any SLDD+ formula can be turned into an equivalent
AADD formula in linear time (Proposition A.7). However,
this is not the case unless P = NP, hence AADD does not
satisfy CO∼γ unless P = NP.

Proposition A.19. Let L be a representation language over
X w.r.t. V , where V is totally ordered by a relation �. If L
satisfies MX∼γ or CT∼γ , then L satisfies CO∼γ .

Proof. If L satisfies MX∼γ , then we can find in polynomial
time an #—x such that fLα( #—x ) ∼ γ or the information that there
is no such assignment, so we can check in polynomial time
whether there exists an #—x such that fLα( #—x ) ∼ γ. This shows
that MX∼γ implies CO∼γ . Now, it is obvious that counting
the number of #—x such that fLα( #—x ) ∼ γ indicates whether
there exists an #—x such that fLα( #—x ) ∼ γ (the answer is yes
if and only if this number is positive); hence if L satisfies
CT∼γ , it also satisfies CO∼γ .

Proposition A.20. Let L be a representation language over
X w.r.t. V , where V is totally ordered by a relation �. If L
satisfies ME∼γ , then L satisfies CO∼γ .

Proof. If L satisfies ME∼γ , then there exists a polyno-
mial p(·, ·) and an algorithm A taking as input an L for-
mula α and listing every element of CUT∼γ(fLα) in time
bounded by p(|α|, n), where n is the number of elements in
CUT∼γ(fLα).

Now, letA′ be the algorithm that, taking as input an L for-
mula α, simulates the execution of A on input α, and stops
after at most p(|α|, 0) steps. The result it returns depends
on what happened during the simulation. There are three
possible cases:

(i) if A stopped without returning anything, then A′ re-
turns 0;

(ii) if A stopped after having returned at least one assign-
ment, then A′ returns 1;

(iii) if A did not stop by itself, then A′ returns 1.

Obviously A′ runs in time polynomial in the size of α.
Now, it is not hard to see that A′ returns 1 if there exists an
assignment #—x such that fLα( #—x ) ∼ γ, and 0 otherwise.

Indeed, suppose that no such assignment exists. Then by
definition, CUT∼γ(fLα) is empty, soA stops without having
returned anything after at most p(|α|, 0) steps. This is case i:
A′ returns 0.

Now, suppose that there exists an assignment #—x such that
fLα( #—x ) ∼ γ. This means that CUT∼γ(fLα) is not empty; let

us denote n its cardinal. The algorithm A returns n assign-
ments and stops after at most p(|α|, n) steps. Nothing pre-
vents p(|α|, n) to be lower than p(|α|, 0): this corresponds to
case ii, in which A′ returns 1. Finally, in the (probably less
unusual) case when p(|α|, n) > p(|α|, 0),A′ has to interrupt
the simulation of A; this is case iii, in which A′ returns 1.

In conclusion, if L satisfies ME∼γ , then there exists a
polynomial-time algorithm deciding whether there exists an
assignment #—x such that fLα( #—x ) ∼ γ, that is, L satisfies
CO∼γ .

Proposition A.21. SLDD+, SLDD×, and AADD do not satisfy
MX∼γ , CT∼γ , or ME∼γ , unless P = NP.

Proof. From Proposition A.18, none of these languages sat-
isfies CO∼γ unless P = NP. This implies, from Propo-
sitions A.19 and A.20, that they cannot satisfy MX∼γ ,
CT∼γ , or ME∼γ , unless P = NP.

Proposition A.22. SLDD+, SLDD×, and AADD satisfy
MX�γ and MX�γ .

Proof. To get an assignment #—x such that fLα( #—x ) ≥ γ, simply
check whether γ is strictly greater than the maximal value
v∗, which can be obtained in polynomial time since all the
languages satisfy OPTmax (Proposition A.13). If so, we
know that there is no assignment #—x such that fLα( #—x ) ≥ γ.
In the remaining case (i.e., when v∗ ≥ γ), the optimal as-
signments #—x ∗ are such that fLα( #—x ∗) = v∗ ≥ γ; since all
three languages satisfy MXmax (Proposition A.15), one can
get such an #—x ∗ in polynomial time. Since by construction
#—x ∗ ∈ CUT�γ , this proves that all three languages satisfy
MX�γ . We prove in the same way that they satisfy MX�γ ,
as a consequence of the satisfaction of OPTmin (Proposi-
tion A.13) and MXmin (Proposition A.15).

Proposition A.23. SLDD+, SLDD×, and AADD satisfy ME�γ
and ME�γ .

Proof. We prove the result for AADD first, using the basic
idea that at any nodeN of a normalized AADD formula, there
is at least one path to the leaf of valuation 1 and one path
to the leaf of valuation 0. A path reaching N provides an
offset, gathered from its arcs, say 〈p, q〉, so the cheapest path
traversingN has valuation p and the most expensive one has
valuation p+ q.

This allows us to traverse the graph in reverse topological
order, only developing a node if it yields at least one ele-
ment of the cut (e.g., if we want the elements of CUT�γ ,
node N is only developed if p + q ≥ γ). We thus get the
entire list of elements in the cut by a tree search algorithm
that is backtrack-free, and thus polynomial in the number of
leaves reached, which is exactly the number of assignments
#—x such that fLα( #—x ) ≥ γ (resp. fLα( #—x ) ≤ γ). A recursive
implementation of this procedure is detailed in Algorithm 3
(the top call is supposed to pass #—x =

#—∅). Note that the as-
signments listed are not always complete, in the sense that
they only feature variables encountered on the correspond-
ing path. It is straightforward to extend each resulting par-
tial assignment #—z into the full list of complete assignments
of which #—z is a restriction.



Algorithm 3: EnumModelsAADD(α, #—x ,R, γ)

input : an AADD formula α, of root N , with offset
〈q0, f0〉; a current assignment #—x ; a relation
R ∈ {≤,≥}, and a threshold γ ∈ R+

output: the list of assignments #—x · #—y such that
fAADDα ( #—x · #—y ) R γ

1 ifR = ≤ then
2 if q0 > γ then
3 return

4 else
5 if q0 + f0 < γ then
6 return

7 if N is the leaf then
8 print #—x
9 return

10 let y ..= Var(N)
11 foreach arc a going out of N do
12 let #—y = 〈y, v(a)〉
13 let M be the destination node of a
14 let α′ be the AADD formula rooted at the destination

node of a, with offset 〈q0 + f0 × qa, f0 × fa〉
15 EnumModelsAADD(α, #—x · #—y 〉,R, γ)

This proves that AADD satisfies ME�γ and ME�γ ; we
can deduce from Proposition A.7 that SLDD+ and SLDD×
also satisfy these two queries.

Lemma A.24. Let ⊗ ∈ {+,×}. There exists a polynomial-
time algorithm mapping any SLDD⊗ formula α and every set
of variables X ⊇ Var(α) to an equivalent SLDD⊗ formula
in which each path mentions all the variables in X .

Proof. Let α be an SLDD⊗ formula, in which variables are
ordered with respect to C. Let X = {x1, . . . , xn} be a set
of variables containing all variables in Var(α); without loss
of generality, let us assume that x1 C · · ·C xn.

What we want is to build an L formula α′ in which every
path from the root to the leaf is of the form 〈a1, . . . , an〉
where each ai (with i ∈ {1, . . . , n − 1}) is an arc from a
node labeled with xi to a node labeled with xi+1, and an is
an arc from a node labeled with xn to the leaf node.

This property can be easily guaranteed in polynomial
time: for each arc a of α from a node Ni labeled with xi
(i ∈ {1, . . . , n − 1}) to a node M such that either M is the
leaf or Var(M) = xi+j with j > 1,

1. add j − 1 new nodes Ni+1, . . . , Ni+j−1 respectively la-
beled xi+1, . . . , xi+j−1;

2. redirect a to Ni+1; and
3. for each of the new nodesNk (k ∈ {i, . . . , i+j−1}), for

each value d ∈ Dxk , add an arc ak,d from Nk to Nk+1

(conveniently consideringNi+j to beM ) with v(ak,d) =
d and ϕ(ak,d) is the neutral element of ⊗ (0 for + and 1
for ×).

Lemma A.25. There exists a polynomial algorithm map-
ping any SLDD+ formula α of maximal value v∗ and any
constant K ∈ R+ such that K ≥ v∗, to an SLDD+ repre-
sentation of the function g = K − fSLDD+α .

Proof. This is not hard to prove, but care must be taken to
always remain in the fragment (negative arc valuations are
forbidden by the definitions).

We first compute v∗, the maximal value taken by fSLDD+α ;
this can be done in polynomial time, since SLDD+ satis-
fies OPTmax (Proposition A.13). Then we modify α so
that all of its paths mentions all the variables in Var(α)
(Lemma A.24 states that it can be done in polynomial time),
and every arc label ϕ (including the offset) is replaced by
K − ϕ, which is guaranteed to be inR+ since K ≥ v∗. We
call α′ the modified formula.

It should be clear that for any #—x , fSLDD+α′ ( #—x ) = K × (1 +
|Var(α)|) − fα( #—x ), since along each path, we added K as
many times as there are arcs, plus one time for the offset.
Applying the normalization procedure on α′ (in linear time,
thanks to Proposition A.5), we get an SLDD+ formula α′′
with offset K × (1 + |Var(α)|)− v∗: indeed, the offset of a
normalized SLDD+ formula is the minimal value taken by the
function it represents (each node has at least one 0-valued
outgoing arc).

We now simply have to substract K×|Var(α)| to the off-
set of α′′ to obtain an SLDD+ representation of the function
g = K − fSLDD+α .

Proposition A.26. SLDD+, SLDD×, and AADD do not satisfy
CT�γ or CT�γ unless P = NP.

Proof. We first show that SLDD+ cannot satisfy CT�γ un-
less P = NP. Let us suppose it is the case; then we can com-
pute in polynomial time the number M≥γ of assignments #—x

such that fSLDD+α ( #—x ) ≥ γ (i.e., compute |CUT�γ(f
SLDD+
α )|).

It is moreover always possible to compute the maximal value
v∗ reached by fSLDD+α (SLDD+ satisfies OPTmax, Proposi-
tion A.13) and to get a representation in the same language
of the function gα = v∗ − fSLDD+α (thanks to Lemma A.25).
Since we suppose that CT�γ is satisfied, then it is possi-
ble to compute in polynomial time the number M of as-
signments #—x such that v∗ − f

SLDD+
α ( #—x ) ≥ v∗ − γ, taking

v∗ − γ as the threshold. We can then compute the number
M>γ = |D1 × · · · ×Dn| −M of assignments #—x such that
v∗ − fSLDD+α ( #—x ) < v∗ − γ: by construction, M>γ is equal
to the number of assignments #—x such that fSLDD+α ( #—x ) > γ.

Since we know that there are M≥γ assignments #—x such
that fSLDD+α ( #—x ) ≥ γ, we can deduce that there are precisely
M≥γ −M>γ assignments #—x such that fSLDD+α ( #—x ) = γ.

We have proved that the satisfaction of CT�γ implies that
of CT∼γ ; since SLDD+ does not satisfy CT∼γ unless P =
NP (Proposition A.21), we conclude that SLDD+ does not
satisfy CT�γ unless P = NP.

We prove that SLDD+ does not satisfy CT�γ unless P =
NP in a similar way: the satisfaction of CT�γ would allow
us to compute M≤γ and M<γ using the same technique,
hence it would imply the satisfaction of CT∼γ .



These two results imply that SLDD× cannot satisfy CT�γ
or CT�γ unless P = NP. Indeed, an SLDD+ representa-
tion of a function g can be transformed in polynomial time
into an SLDD× representation of the function h = 2g , sim-
ply by replacing the label of the leaf by 1 and the value ϕ
of each arc (including the offset) by 2ϕ. If SLDD× satisfied
CT�γ (resp. CT�γ), we could obtain in polynomial time
the number of assignments #—x such that 2g(

#—x ) ≤ 2γ (resp.
2g(

#—x ) ≥ 2γ), which is the same number as CUT�γ(g)

(resp. CUT�γ(g)). Thus the satisfaction of CT�γ (resp.
CT�γ) on SLDD× would imply its satisfaction on SLDD+,
yet we have just proved that it is not satisfied by SLDD+ un-
less P = NP.

Finally, AADD does not satisfy CT�γ (resp. CT�γ), be-
cause this would imply that SLDD+ also satisfies it, since
SLDD+ ≥` AADD (Proposition A.7).

Proposition A.27. SLDD+, SLDD×, and AADD do not satisfy
CUT∼γ .

Proof. We consider a set X = {y1, . . . , yn, z1, . . . , zn} of
2n Boolean variables, and C the total order on X defined
by y1 C · · · C yn C z1 C · · · C zn. Let f sum and fprod be
the functions defined by f sum( #—y · #—z ) =

∑n
i=1 yi2

n−i +∑n
i=1 zi2

n−i, and fprod( #—y · #—z ) = 2f
sum( #—y · #—z ). Figure 2

shows how f sum (resp. fprod) can be represented as an
SLDD+ (resp. SLDD×) formula ordered by C containing only
2n+ 1 nodes and 2n arcs. Since SLDD+ ≥` AADD (Proposi-
tion A.7), f sum also has a linear-sized AADD representation.

Let f eq be the Boolean function defined by f eq( #—y · #—z ) =
1 if f sum( #—y · #—z ) = 2n, and 0 otherwise. Note that f eq also
equals 1 if and only if fprod( #—y · #—z ) = 22n .

We now show that there is no polynomial-sized represen-
tation of f eq as an OBDDC formula. The proof basically re-
lies on a result by Sieling and Wegener (1993), showing that
for any Boolean function f over X , if the number of restric-
tions on {y1, . . . , yn} which are distinct and depends on z1

is equal to m, then any OBDDC formula representing f con-
tains at least m nodes labeled with z1. We show that it is the
case for f eq.

Clearly enough, every assignment #—y over {y1, . . . , yn}
(resp. #—z over {z1, . . . , zn}) is associated in a bijective
way with a natural number N( #—y ) =

∑n
i=1 yi2

n−i (resp.
N( #—z ) =

∑n
i=1 zi2

n−i) which belongs to [0, 2n− 1]. In par-
ticular, there are 2n distinct assignments over {y1, . . . , yn}.
Consider now two distinct assignments #—y and #—y ′ over
{y1, . . . , yn}. The two restrictions f eq

#—y and f eq
#—y ′ are dis-

tinct, since they have distinct support sets (i.e., the set
of assignments over {z1, . . . , zn} that makes the restric-
tion equal to 1), namely { #—z | N( #—y ) + N( #—z ) = 2n } and
{ #—z | N( #—y ′) + N( #—z ) = 2n }, which are singletons (there is
exactly one #—z for each #—y ).

Furthermore, for each assignment #—y over {y1, . . . , yn},
f eq

#—y depends on z1, i.e., f eq
#—y ·〈z1,0〉 6= f eq

#—y ·〈z1,1〉: this is obvious
since the support set of f eq

#—y is a singleton (one of the two
functions always returns 0, whereas the other one returns 1
for exactly one assignment).

Consequently, according to the abovementioned result,
any OBDDC formula representing f eq contains at least 2n−1
nodes labeled with z1: there can be no polynomial-sized
OBDDC representation of f eq.
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Figure 2: Left: An SLDD+ representation of f sum. Right:
An SLDD× representation of fprod.

Now, note that the model set of f eq is exactly
CUT∼γ(f sum) = CUT∼γ(fprod) with γ = 2n. This
means that if SLDD+ (resp. SLDD×, AADD) satisfied CUT∼γ ,
we could get in time polynomial in n an SLDD+ (resp.
SLDD×, AADD) representation of f eq with a = 1 and b = 0,
that we could in turn translate in polynomial time into an
OBDDC formula (using Proposition A.8, and remarking that
an MDD over Boolean variables is an OBDD). By contradic-
tion, SLDD+, SLDD×, and AADD do not satisfy CUT∼γ .

Proposition A.28. SLDD+ does not satisfy CUT�γ or
CUT�γ .

Proof. The first step is to show that SLDD+ satisfies
CUT�γ if and only if it satisfies CUT�γ . Let a, b ∈ R+

such that a > b, and let γ ∈ R+.
Suppose SLDD+ satisfies CUT�γ . Computing the max-

imal value v∗ of fSLDD+α , which can be done in polyno-
mial time (Proposition A.13), and choosing a constant K ≥
max(v∗, γ), Lemma A.25 states that we can build in poly-
nomial time an SLDD+ representation α′ of the function
K − f

SLDD+
α . Now, applying the CUT�γ transformation

to α′ with a threshold of K− γ, which by hypothesis can be



done in polynomial time, we get an SLDD+ representation of
the function g defined by g( #—x ) = a if fSLDD+α′ ( #—x ) ≥ K − γ,
i.e., if fSLDD+α ( #—x ) ≤ γ, and g( #—x ) = b otherwise: CUT�γ is
satisfied. This proves that if SLDD+ satisfies CUT�γ , it also
satisfies CUT�γ . The same reasoning can be used to show
that if it satisfies CUT�γ , it also satisfies CUT�γ . Hence,
the satisfaction of either of the two implies the satisfaction
of both. We now show that it also implies the satisfaction of
CUT∼γ .

Let γ ∈ R+ and let α be an SLDD+ formula. We ap-
ply the CUT�γ and CUT�γ transformations on α, with
a = 1 and b = 0. The resulting SLDD+ formulæ can
be turned in polynomial time into ordered MDDs (Propo-
sition A.8), and since MDD satisfies ∧BC (Amilhastre et
al. 2012), we can obtain in polynomial time an MDD the
models of which are exactly the assignments that are in
CUT�γ(fα) ∩ CUT�γ(fα), i.e., an MDD representing
CUT∼γ(fα). We can replace the 0-leaf by some b ∈ R+

and the 1-leaf by some a ∈ R+ such that a > b: we get an
ADD representation of the function h defined by h( #—x ) = a
if #—x ∈ CUT∼γ(fα) and h( #—x ) = b otherwise. Since
ADD ≥` SLDD+ (Proposition A.7), this means that SLDD+

satisfies CUT∼γ .
All in all, if SLDD+ satisfies CUT�γ (resp. CUT�γ), it

also satisfies CUT�γ (resp. CUT�γ), which in turn im-
plies that it satisfies CUT∼γ , yet we have shown that it
does not (Proposition A.27). Hence SLDD+ does not satisfy
CUT�γ or CUT�γ .

Corollary A.29. SLDD× and AADD do not satisfy CUT�γ
or CUT�γ .

Proof. We show that if SLDD× satisfied CUT�γ (resp.
CUT�γ), SLDD+ would also satisfy it. Indeed, an SLDD+

representation α of a function f can be transformed in poly-
nomial time into an SLDD× representation α′ of the function
g = 2f , simply by replacing the label of the leaf by 1 and
the value ϕ of each arc (including the offset) by 2ϕ. Suppose
SLDD× satisfies CUT�γ (resp. CUT�γ): taking a = 1 and
b = 0, we could obtain in polynomial time an SLDD× rep-
resenting CUT�γ(f) (resp. CUT�γ(f)), by taking the cut
of α′ w.r.t. the threshold 2γ . We can transform the result
into an MDD, which only takes polynomial time (Proposi-
tion A.8), then replace the 0-leaf by some b ∈ R+ and the
1-leaf by some a ∈ R+ such that a > b: we get an ADD
representation of the function h defined by h( #—x ) = a if #—x

is in CUT�γ(f) (resp. CUT�γ(f)) and h( #—x ) = b other-
wise. Since ADD ≥` SLDD+ (Proposition A.7), this means
that SLDD+ satisfies CUT�γ (resp. CUT�γ), yet we have
shown that it does not (Proposition A.28). Consequently,
SLDD× cannot satisfy CUT�γ (resp. CUT�γ).

Now, using a reasoning similar to that of the previous
paragraph, we show that if AADD satisfied CUT�γ (resp.
CUT�γ), SLDD+ also would. Indeed, an SLDD+ formula
can be turned in polynomial time into an AADD formula
(Proposition A.7); then we could apply CUT�γ (resp.
CUT�γ) on values 0 and 1, so that the resulting AADD for-
mula can be turned in polynomial time into an MDD (Propo-
sition A.8); then the leaves of the MDD can be re-labeled

with any a, b ∈ R+, and the resulting ADD formula be turned
in polynomial time into an SLDD+ (Proposition A.7).

Combinations
Proposition A.30. ADD, SLDD+, SLDD×, and AADD do not
satisfy +C, ×C, maxC, or minC.

Proof. The proofs rely on results in the Boolean case: We-
gener (1987) has shown that there exists a family of formulæ
Σn over {x1, . . . , xn}where each Σn has a number of prime
implicates cubic in n (hence each Σn has a polynomial-sized
CNF representation) but every OBDD representation of Σn
has a size exponential in n. We use the Σn family in all the
following proofs.
ADD does not satisfy +C. For each n, for each of the

clauses δi of Σn, let αi be an ADD formula of size linear
in the size of δi (hence linear in n) representing a term
equivalent to ¬δi, i.e., such that for each assignment #—x over
{x1, . . . , xn}, fADDαi ( #—x ) = 0 if #—x satisfies δi, fADDαi ( #—x ) = 1
otherwise. Suppose that ADD satisfied +C. In this case, it
would be possible to compute in time polynomial in n an
ADD representation of the function that associates with each
assignment #—x the number of clauses of Σn violated by #—x .
Since ADD satisfies CUTmin (Proposition A.14), we could
then compute from it in polynomial time an ADD represen-
tation with a = 1 and b = 0 of the set of assignments #—x
such that fΣn( #—x ) = 1 if #—x does not violate any clause,
fΣn( #—x ) = 0 otherwise. By construction, this ADD repre-
sentation is also an OBDD representation of Σn. This would
contradict the fact that every OBDD representation of Σn has
exponential size.
ADD does not satisfy maxC. Consider the ADD formulæ

αi as in the proof for the +C case. If ADD satisfied maxC,
then it would be possible to compute in time polynomial in
n an ADD representation of the function fΣn that associates
with each assignment #—x the value maxi f

ADD
αi ( #—x ). By con-

struction, this value is equal to 1 if Σ is violated by #—x and
is equal to 0 otherwise. Hence the ADD representation of the
function fΣn also is an OBDD representation of ¬Σn. An
OBDD representation of Σn could be easily obtained from it
by labeling the 0-leaf with 1 and the 1-leaf with 0. This
would contradict the fact that every OBDD representation of
Σn has exponential size.
ADD does not satisfy ×C. For each of the clauses δi

of Σn, let αi be an ADD representation of δi. Each αi can
be easily generated in time linear in the size of δi, hence in
time linear in n. If ADD satisfied ×C, it would be possible
to compute in time polynomial in n an ADD representation of
the function fΣn that associates with each assignment #—x the
value

∏
i f

ADD
αi ( #—x ). This value is equal to 1 if Σn is satisfied

by #—x and to 0 otherwise. Hence it is an OBDD representation
of Σn, contradiction.
ADD does not satisfy minC. For each of the clauses δi

of Σn, let αi be an ADD representation of δi. Each αi can be
easily generated in time linear in the size of δi, hence in time
linear in n. If ADD satisfied minC, then it would be possible
to compute in time polynomial in n an ADD representation
of the function fΣn that associates with each assignment #—x



the value mini f
ADD
αi ( #—x ),. This value is equal to 0 if Σ is

violated by #—x and is equal to 1 otherwise. Hence it is an
OBDD representation of Σn, contradiction.
SLDD+, SLDD×, and AADD do not satisfy +C, ×C,

maxC, or minC. Let L ∈ {SLDD+, SLDD×, AADD}. Any
ADD formula can be transformed in linear time into an equiv-
alent L formula (Proposition A.7). Furthermore, L satisfies
CUTmin (Proposition A.14). Finally, for each transforma-
tion, each one of the functions fΣn considered in the above
proofs takes its values in {0, 1}. Hence, thanks to Propo-
sition A.8, each of its L representations (as computed as in
the above proofs) could be turned in polynomial time into
an equivalent MDD representation (which would be an OBDD
representation, since every variable is a Boolean one). Once
again, this would contradict the fact that every OBDD repre-
sentation of Σn has exponential size.

Proposition A.31. SLDD+, SLDD×, and AADD do not satisfy
maxBC or minBC.

Proof. We first show that the satisfaction of maxBC im-
plies that of CUT�γ .

Let γ ∈ V; we can easily generate in constant time an
ADD representation of the constant function fγ defined by
∀ #—x , fγ( #—x ) = γ. Given Proposition A.7, we can also gen-
erate in constant time an SLDD+ (resp. SLDD×, resp. AADD)
representation of fγ .

Suppose that L ∈ {SLDD+, SLDD×, AADD} satisfied
maxBC. Then for any L formula α, it would be possible
to build in time polynomial in the size of α an L represen-
tation β of the function g = max(fα, fγ). Because each of
the three languages satisfies OPTmin (Proposition A.13),
we could compute in polynomial time the minimum value
v∗ reached by g. If v∗ > γ, then ∀ #—x , fα( #—x ) > γ. Accord-
ingly, CUT�γ(fα) = ∅. So the cut f�γ on {b, c} is the
constant function such that ∀ #—x , f�γ( #—x ) = c, which can be
represented in constant time as an L formula with only one
node.

The case when v∗ ≤ γ is more complicated, but we show
that it is possible to build in polynomial time an L repre-
sentation of f�γ , by redirecting the arcs not taking part in
valuations equal to γ.

First, we can compute in polynomial time, for any arc
a of an L formula α, the cost mincost(a) of the cheapest
assignment #—x such that p( #—x ) contains a.

This is clear when L is SLDD+ or SLDD×: using a shortest
path algorithm, we can compute in polynomial time, for any
node N , the cost minout(N) of the cheapest path from N
to the leaf, and the cost min in(N) of the cheapest path from
the root toN . Then for any arc a in α, denotingM andN its
source and destination nodes, mincost(a) = min in(M) ⊗
ϕa⊗minout(N), where⊗ is + for SLDD+ and× for SLDD×.

In the case of AADD, this is less direct. We use the fact
that for any node N in a normalized AADD formula, there al-
ways exist a path from N to the leaf with valuation 0. This
allows the computation of mincost(a) for each arc a in one
traversal of the graph from the root to the sink in topolog-
ical order. The procedure is described in Algorithm 4; the
idea is to compute an “offset” for each nodeN , representing

the aggregation of the valuation pairs of each arc along the
cheapest path from the root to N .

Algorithm 4: MinCostArcsAADD(α)

input : an AADD formula α, of root R, with offset
〈q0, f0〉

output: the value of mincost(a) for each arc a in α

1 foreach node N of α in reverse topological ordering do
2 if N is the root node then
3 let qmin(N) ..= q0

4 let fmin(N) ..= f0

5 else
6 let amin

..= arg mina∈In(N) mincost(a)
7 let qmin(N) ..= qmin(amin)
8 let fmin(N) ..= fmin(amin)

9 foreach arc a going out of N do
10 let qmin(a) ..= qmin(N) + fmin(N) ∗ qa
11 let fmin(N) ..= fmin(N) ∗ fa
12 let mincost(a) = qmin(a) + fmin(a)

13 return { 〈a,mincost(a)〉 | a arc in α }

It is thus possible, for any L ∈ {SLDD+, SLDD×, AADD},
to obtain in polynomial time the value mincost(a) for
any arc a in the L representation α′ of the function g =
max(fα, fγ). With a simple transformation, we can turn α′
into an L representation of the cut f�γ on {b, c}.

The procedure is as follows: label the leaf with b;
add a new c-labeled leaf; redirect every arc a such that
mincost(a) > γ to the new c leaf; remove all arc valua-
tions. The result is an ADD formula, which represents f�γ .
Indeed, let #—x ∈ CUT�γ(fα); clearly, g( #—x ) = γ, so each
arc a along the path p( #—x ) in α′ is such that mincost(a) = γ:
the path is still the same in β, and leads to the b-leaf.

Conversely, consider an assignment #—x such that fβ( #—x ) =

b; we show that #—x ∈ CUT�γ(fα). Let us denote as pβ( #—x )
the path corresponding to #—x in β, and as pα′( #—x ) the corre-
sponding path in α′. It is clear that these two paths contain
the same arcs, since pβ( #—x ) leads to the b-leaf (no arc has
been modified). Denoting 〈a1, . . . , an〉 the sequence of arcs
along these paths, we know by construction that for each
ai, mincost(ai) = γ. We show by induction that for all
k ∈ {1, n}, there exists a path starting with a1, . . . , ak of
valuation γ.

This is trivial for k = 1, since mincost(a1) = γ. Sup-
pose the hypothesis holds for some k ∈ {1, n−1}; we show
it holds for k + 1. Let pk be the path in α′ from the source
node of ak+1 to the leaf such that ϕ(〈a1, . . . , ak〉 · pk) = γ,
where ϕ(p) denotes the valuation of some path p. Since
mincost(ak+1) = γ, there exists a path of valuation γ con-
taining ak+1: let us denote pin the part before ak+1 and pk+1

the part after ak+1.
By construction, each path p in α′ verifies ϕ(p) ≥ γ (re-

call that α′ represents max(fα, fγ)). Hence, we know that



the following inequalities hold:

ϕ(pin · pk) ≥ γ
ϕ(〈a1, . . . , ak, ak+1〉 · pk+1) ≥ γ

(it can be easily checked that the two paths are legal paths).
Now, since ϕ(pin · 〈ak+1〉 · pk+1) = γ, we can deduce
from the first inequation that ϕ(pk) ≥ ϕ(〈ak+1〉 · pk+1),
of which we can deduce that ϕ(〈a1, . . . , ak〉 · pk) ≥
ϕ(〈a1, . . . , ak, ak+1〉 · pk+1) (it can be checked that these
deductions are valid for any L ∈ {SLDD+, SLDD×, AADD}).

Since ϕ(〈a1, . . . , ak〉 · pk) = γ, it holds that γ ≥
ϕ(〈a1, . . . , ak, ak+1〉 · pk+1); combining this result with
the second inequation, we get that ϕ(〈a1, . . . , ak, ak+1〉 ·
pk+1) = γ: the proposition holds for k + 1, therefore by
induction it holds for all k ∈ {1, n}. The fact that it holds
for k = n implies that ϕ(〈a1, . . . , an〉) = γ: fα′( #—x ) = γ,
so #—x ∈ CUT�γ(fα).

This proves that β is an ADD representation of f�γ on
{b, c}; it could be transformed in linear time into an equiv-
alent L representation (Proposition A.7). Hence, for SLDD+,
SLDD×, or AADD, the satisfaction of maxBC implies that
of CUT�γ ; since these languages do not satisfy CUT�γ ,
they cannot satisfy maxBC.

It can be shown in a similar way that for these three lan-
guages, the satisfaction of minBC implies that of CUT�γ ,
considering the min-combination of α with an L represen-
tation of the constant function fγ . Since CUT�γ is not
satisfied by SLDD+, SLDD×, and AADD, we conclude in the
same way that these languages do not satisfy minBC.

Proposition A.32.
• SLDD+ and AADD do not satisfy ×BC;
• SLDD× and AADD do not satisfy +BC.

Proof. The proofs of the two items work in a similar way;
we first consider the case of ×BC on SLDD+ and AADD.

Let f be the function of n Boolean variables (with n ≥ 3)
defined by ∀ #—x , f( #—x ) =

∑n−1
i=0 xi · 2i (this is the function

associating a n-bit vector with its corresponding integer),
and g the function of n Boolean variables defined by ∀ #—x ,
g( #—x ) = 2n +

∑n−1
i=0 (1− xi) · 2i. It holds that ∀ #—x , f( #—x ) +

g( #—x ) = 2n+1 − 1.
We consider the variable ordering given by x0Cx1C· · ·C

xn−1.
Each of the two functions f and g has an SLDD+ represen-

tation with n+ 1 nodes and 2n arcs (one node per variable,
two arcs per node). In the one of f (see Figure 3), the node
at level xi has one arc with label 1 and valuation 2i and the
other with label 0 and valuation 0. In the one of g (see Fig-
ure 4), the arc valuations are inverted at each level, and the
root is associated with an offset ϕ0 = 2n.

Let us consider the following ADD representation α of
h = f × g. There are 2n paths in α; let us denote them
p0, . . . , p2n−1, with pk being the one that corresponds to the
assignment #—x such that f( #—x ) = k. The path pk leads to a
leaf of value k(2n+1 − k − 1), that we denote as hk. The
sequence 〈hk〉0≤k<2n is strictly increasing (since k ≤ 2n−1,
δk = hk − hk−1 = 2(2n − k), δk > 4 for 0 ≤ k ≤ 2n−1),

x0 x1 x2 xn−1 0

20

0

21

0

2n−1

0

Figure 3: A SLDD+ representation of f

x0

2n

x1 x2 xn−1 0

0

20

0

21

0

2n−1

Figure 4: A SLDD+ representation of g

so all leaves are labeled with a different value. Now, let
us build a AADD representation of h from α. Following the
procedure outlined in the proof of Proposition A.7, we start
with the ADD formula α, and add a neutral valuation (〈0, 1〉)
to every arc except for those pointing to a leaf L, which re-
ceive the value 〈ϕ(L), 0〉. Stated otherwise, the last arc of
each path pk is valued 〈hk, 0〉. Then the leaves are merged
into a unique leaf, and the AADD formula obtained is normal-
ized, following Algorithm 1. Let us suppose the algorithm
is treating some node at level xn−1 (the level closest to the
leaf); it is traversed by two paths, say pk−1 and pk. We
have qmin = hk−1 and range = hk − hk−1 = δk, which
is greater than 0, so the hk−1 arc receives value 〈0, 0〉, the
hk arc receives value 〈1, 0〉, and the unique incoming arc re-
ceives value 〈hk−1, hk − hk−1〉. Clearly, all nodes at level
xn−1 are isomorphic but none of them is redundant.

Now, let us suppose the algorithm is treating some node
N at level xn−2. It is traversed by four paths, say p4j ,
p4j+1, p4j+2, and p4j+3. Its two outgoing arcs are re-
spectively valued with 〈h4j , δ4j+1〉 and 〈h4j+2, δ4j+3〉. In
this case, qmin = h4j and range = h4j+3 − h4j . Since
range > 0, the 0-labeled outgoing arc of N receives the
value 〈0, δ4j+1/range〉. Let us denote vj the multiplicative
constant of this valuation: vj = δ4j+1/(h4j+3 − h4j).

It is tedious, yet not difficult, to check that the sequence
〈vj〉0≤j≤b(2n−1)/4c is strictly increasing (recall that we sup-
pose n ≥ 3). Hence, the 0-labeled outgoing arcs of all
nodes at level xn−2 are all valued with a distinct multi-
plicative constant: none of them can be isomorphic to an-
other one. Furthermore, the 1-labeled outgoing arc of N
receives the value 〈(h4j+2 − h4j)/(h4j+3 − h4j), (h4j+3 −
h4j+2)/(h4j+3 − h4j)〉. Since h4j+2 − h4j > 0, this la-
bel differs from the one of the 0-labeled outgoing arc of N ,
hence N is not redundant.

Consequently, after applying the normalization and the re-
duction procedures, the resulting AADD formula has at least
b(2n − 1)/4c+ 1 = 2n−2 distinct nodes at level xn−2. Re-
call that no AADD formula can be strictly smaller than an
equivalent reduced and normalized AADD formula (Proposi-
tion A.6). All in all, we have the following:



(i) f and g have SLDD+ representations of size polynomial
in n;

(ii) the size of the smallest AADD representation of f × g is
exponential in n.

Since any SLDD+ representation can be transformed into
an AADD formula in linear time (Proposition A.7):

(a) f and g have an AADD representation of size polynomial
in n, because of (i);

(b) the size of the smallest SLDD+ representation of f × g is
exponential in n, because of (ii).

To sum up, SLDD+ does not satisfy ×BC (thanks to (i)
and (b)), and AADD does not satisfy ×BC either (thanks to
(ii) and (a)).

Now, for +BC on SLDD× and AADD, the proof is very
similar to the previous one, using different functions f and
g: we take f( #—x ) = 2

∑n−1
i=0 xi·2i , and g such that f( #—x ) ×

g( #—x ) = 22n+1−1.
Both functions have SLDD× representations with n + 1

nodes and 2n arcs, and only exponential AADD represen-
tations (following the same mechanism as in the previous
proof). Since a SLDD× representation can be transformed
into an AADD one in linear time (Proposition A.7), the results
follow.

Proposition A.33.
• SLDD+ satisfies +BC;
• SLDD× satisfies ×BC;
• ADD satisfies ×BC,+BC, maxBC, minBC.

Proof. Let α and α′ be two SLDD⊗ formulæ, over
{x1, . . . , xn}, with ⊗ ∈ {+,×}. They are supposed to be
ordered in the same way, using the ordering x1 C · · · C xn.
We aim at building an SLDD⊗ representation of g = f

SLDD⊗
α ⊗

f
SLDD⊗
α′ based on the same variable ordering.

First, we are going to modify α (resp. α′) such that every
path from the root to the leaf of the formula is of the form
〈a1, . . . , an〉 where each ai (with i ∈ {1, . . . , n − 1}) is an
arc from a node labeled with xi to a node labeled with xi+1,
and an is an arc from a node labeled with xn to the leaf node.
Lemma A.24 states that this can be done in polynomial time.

Consider now an assignment #—x and let p( #—x ) =
〈a1, . . . , an〉 and p′( #—x ) = 〈a′1, . . . , a′n〉 be the correspond-
ing paths in α and α′. It holds that:

g( #—x ) = (ϕ(a1)⊗ · · · ⊗ ϕ(an))⊗ (ϕ(a′1)⊗ · · · ⊗ ϕ(a′n)).

Because ⊗ is associative and commutative, we get:

g( #—x ) = (ϕ(a1)⊗ ϕ(a′1))⊗ · · · ⊗ (ϕ(an)⊗ ϕ(a′n)).

It is thus possible to get an SLDD⊗ representation of g by
making the product of the two graphs, levelwise: for any N
of α and N ′ of α′ such that Var(N) = Var(N ′) = x, the
new graph, δ, contains the node denoted N ⊗ N ′ such that
Var(N ⊗ N ′) = x; we add a leaf labeled with the neutral
element for ⊗. For each value d in the domain of x, let
a be the arc in Out(N) such that v(a) = d and a′ be the
arc in Out(N ′) such that v(a′) = d; add to the new graph

one arc aδ from node N ⊗N ′ to node M ⊗M ′ with value
v(aδ) = d and ϕ(aδ) = ϕ(a) ⊗ ϕ(a′); then recursively
delete unreachable nodes and arcs. The offset of δ is set to
Offset(α)⊗Offset(α′). This construction is feasible in time
polynomial in the sizes of α and α′.

The resulting structure δ is a (typically non-normalized)
SLDD⊗ formula. For any assignment #—x , consider the corre-
sponding path p( #—x ) = 〈a′′1 , . . . , a′′n〉 in δ. We have:

f
SLDD⊗
δ ( #—x ) = Offset(δ)⊗ ϕ(a′′1)⊗ · · · ⊗ ϕ(a′′n)

= Offset(α)⊗Offset(α′)

⊗ ϕ(a1)⊗ ϕ(a′1)⊗ · · · ⊗ ϕ(an)⊗ ϕ(a′n)

= (Offset(α)⊗ ϕ(a1)⊗ · · · ⊗ ϕ(an))

⊗ (Offset(α′)⊗ ϕ(a′1)⊗ · · · ⊗ ϕ(a′n))

= fSLDD⊗α ( #—x )⊗ fSLDD⊗α′ ( #—x )

= (fSLDD⊗α ⊗ fSLDD⊗α′ )( #—x ).

That is to say, δ is an SLDD+ representation of fSLDD⊗α ⊗
f
SLDD⊗
α′ . This proves that SLDD+ satisfies +BC and SLDD×

satisfies ×BC.
Bounded combinations by ⊗ ∈ {min,max,+,×} hold

on ADD formulæ, using the same idea of automata product.
There are no valuations on the arcs, but on the leaf nodes:
for each leaf N in α and each leaf M in β, the leaves of δ
are nodesN⊗M labeled with ϕ(N⊗M) = ϕ(N)⊗ϕ(M).

Sentential Entailment
Proposition A.34. ADD satisfies SE.

Proof. Let α and β be two ADD formulæ. We have to show
that it is possible to decide in polynomial time whether
∀ #—x , fα( #—x ) ≤ fβ( #—x ). The point is that this property holds
if and only if for every value γ taken by fα on some assign-
ments #—x , the set of these assignments is included in the set
of assignments #—y such that fβ( #—y ) ≥ γ. So, let Γ be the (fi-
nite) set of labels of the terminal nodes of α. For each level
γ ∈ Γ, thanks to Propositions A.11 and A.8, we compute in
linear time an MDD formula α=γ representing CUT∼γ(fα)
(its 1-leaf is the leaf of α labeled with γ and its 0-leaf is
obtained by merging all the leaves of α not labeled with γ)
and an MDD formula β≥γ representing CUT�γ(fβ) (its 1-
leaf is obtained by merging all the leaves of β labeled with a
λ ≥ γ and its 0-leaf is obtained by merging all the leaves of
α not labeled with a λ < γ). Checking whether every model
of α=γ is a model of β≥γ can be done in polynomial time
since SE is satisfied by MDD.

The procedure repeats this operation for each element of
Γ, thus it runs in polynomial time. If it is the case that for
each γ ∈ Γ, every model of α=γ is a model of β≥γ , then it
means that ∀ #—x , fα( #—x ) ≤ fβ( #—x ), so the procedure outputs
1; if it is not the case, it outputs 0.

Proposition A.35. SLDD× satisfies SE.

Proof. First, note that ∀ #—x , f( #—x ) ≤ g( #—x ) holds if and only
if (i) ∀ #—x , g( #—x ) = 0 =⇒ f( #—x ) = 0, and (ii) ∀ #—x , f ×



g′ ( #—x ) ≤ 1, where g′( #—x ) = 1/g( #—x ) if g( #—x ) > 0 and 0
otherwise; this is not hard to check in both directions. Then,
testing whether ∀ #—x , fα( #—x ) ≤ fβ( #—x ) amounts to verify that
both conditions hold.

(i) To verify that ∀ #—x , fβ( #—x ) = 0 =⇒ fα( #—x ) = 0, we
only have to compute the minimal value taken by fβ
(this is polynomial, since SLDD× satisfies OPTmin,
see Proposition A.13), and if it is 0, to compute MDD
formulæ α′ and β′ representing the min-cuts of α and
β, respectively (this is polynomial, since by Proposi-
tion A.14, SLDD× satisfies CUTmin, and by Propo-
sition A.8, an SLDD× formula on {0, 1} can be trans-
formed into an equivalent MDD in polynomial time),
and to check whether β′ |= α′, again in polynomial
time as MDD satisfies SE (Amilhastre et al. 2012).

(ii) To verify that ∀ #—x , f × g′ ( #—x ) ≤ 1, we first compute
an SLDD× representation δ of g′ by inverting the offset
and the label of every arc in fβ (that is, V becomes
1/V ), except for 0-labels that remain unchanged (any
path in δ corresponds to the value

∏
i 1/ϕ(ai) =

1/
∏
i ϕ(ai), except when it contains a 0-arc, so fδ =

g′). It is then easy to check whether ∀ #—x , fα( #—x ) ×
g′( #—x ) ≤ 1: just compute the ×-combination of α and
δ (this is polynomial because SLDD× satisfies ×BC,
see Proposition A.33), compute the maximal value v∗
taken by the resulting formula (polynomial because
SLDD× satisfies OPTmax, see Proposition A.13) and
check whether v∗ ≤ 1.

Proposition A.36. SLDD+ satisfies SE.

Proof. First, note that ∀ #—x , f( #—x ) ≤ g( #—x ) holds if and only
if ∀ #—x ,K ≤ g( #—x ) +K − f( #—x ), where K is some constant.
Thus, in order to check whether ∀ #—x , fα( #—x ) ≤ fβ( #—x ), we
are going to build an SLDD+ formula α′ such that fα′ =
K − fα, with K large enough for fα′ to range over R+.
We compute v∗, the maximal value taken by fα (this can be
done in polynomial time, since SLDD+ satisfies OPTmax,
see Proposition A.13), and then choose some K ≥ v∗. Ap-
plying Lemma A.25, we get an SLDD+ representation α′ of
the function K − fα. We then only have to build the +-
combination of α′ and β (polynomial since SLDD+ satis-
fies +BC, see Proposition A.33) and check that the mini-
mal value taken by the resulting formula is larger than K
(polynomial since SLDD+ satisfies OPTmin, see Proposi-
tion A.13).

Variable Elimination
Lemma A.37. For each language L among
{ADD, SLDD+, SLDD+, AADD}, and each operator
� ∈ {max,min,+,×},
• L satisfies S�Elim if and only if it satisfies �C;
• L satisfies SB�Elim if and only if it satisfies �BC;

Proof. We first prove the two sufficient conditions, then the
two necessary conditions.

(⇒) If the �-elimination of a single variable in an L for-
mula Σ can be achieved in polynomial time, it is possible

to compute in polynomial time the �-combination of any
set {α1, . . . , αn} of L formulæ. Indeed, from {α1, . . . , αn},
we can generate in linear time the following L formula Σ:
its root N0 is labeled with a (new) variable v not occurring
in any αi, with Dv = {1, . . . , n}; N0 has n outgoing arcs ai
(with i ∈ {1, . . . , n})), where each ai corresponds to v = i
and points to the root of αi, and the leaves of α1, . . . , αn
are merged when they have the same label; finally, when
L = AADD (resp. SLDD+, resp. SLDD×), the label of each
ai is set to 〈0, 1〉 (resp. 0, resp. 1). By definition, the �-
elimination of v in Σ is fLΣ,〈v,1〉 � · · · � f

L
Σ,〈v,n〉, which by

construction is equal to fLα1
� · · · � fLαn . Accordingly, if we

can obtain in polynomial time an L representation of the �-
elimination of v in Σ, we can also obtain in polynomial time
an L representation of the �-combination of {α1, . . . , αn}.

This proves that the satisfaction of S�Elim implies that
of �C; now, note that the exact same construction also
works in the bounded case. Indeed, when n = 2, the �-
elimination of v in Σ, which can be obtain in time polyno-
mial in |Σ|2 if L satisfies SB�Elim, is fLΣ,〈v,1〉 � f

L
Σ,〈v,2〉,

which by construction is equal to fLα1
� fLα2

. This proves
that the satisfaction of SB�Elim implies that of �BC.

(⇐) Consider an L formula α and a variable x ∈ Var(α)
with a domain of size d. Since L satisfies CD (Proposi-
tion A.10),6 we can build in time polynomial an L represen-
tation of fLα, #—x for each of the d possible #—x ; we denote them
as α1, . . . , αd.

Now, if L satisfies �C, we can obtain an L representation
β of

⊙
#—x f

L
α, #—x in time polynomial in

∑d
i=1|αi|, which is

polynomial in |α| (each αi is of size polynomial in |α|, and
d ≤ |α| since there is at least one x-node in α, that has by
definition d outgoing arcs). By definition, β is an L repre-
sentation of the �-elimination of x in α, so L satisfies �C.

If L only satisfies �BC, then we can also build β,
but we have to do it incrementally with d − 1 binary �-
combinations, so the bound is looser: α1 � · · · � αd is ob-
tained in time bounded by a polynomial of |α|d. However,
this is enough for L to satisfy SB�Elim, by definition.

Proposition A.38. ADD, SLDD+, SLDD×, and AADD do not
satisfy S�Elim or�Elim for any� ∈ {max,min,+,×}.

Proof. For any � ∈ {max,min,+,×}, the satisfaction of
�Elim implies that of S�Elim, and the satisfaction of
S�Elim implies that of �C (Lemma A.37); yet, we have
shown that ADD, SLDD+, SLDD×, and AADD do not satisfy
�C when � ∈ {max,min,+,×} (Proposition A.30).

Proposition A.39. The following results hold:

• ADD satisfies SB�Elim for � ∈ {×,+,min,max};
• SLDD+ satisfies SB+Elim;
• SLDD+ and AADD do not satisfy SB×Elim;
• SLDD× satisfies SB×Elim;
• SLDD× and AADD do not satisfy SB+Elim;

6Note that conditioning can actually be achieved in linear time,
without ever increasing the size of the formula. But the proof
would work even if it were not the case.



• SLDD+, SLDD×, and AADD do not satisfy SB�Elim for
� ∈ {max,min}.

Proof. These are direct consequences of Lemma A.37, since

• ADD satisfies �BC for � ∈ {×,+,min,max} (Proposi-
tion A.33);

• SLDD+ satisfies +BC (Proposition A.33);
• SLDD+ and AADD do not satisfy×BC (Proposition A.32);
• SLDD× satisfies ×BC (Proposition A.33);
• SLDD× and AADD do not satisfy +BC (Proposition A.32);
• SLDD+, SLDD×, and AADD do not satisfy maxBC or

minBC (Proposition A.31).

Marginalization
The marginalization proofs use the fact that the �-
elimination of every variable in any L formula α (i.e.,
the “full” variable elimination) can be done in polyno-
mial time. We denote as Elim�(α) the value resulting
from such a “full” variable elimination, that is, the value⊙

#—x∈DVarL(α)
fLα, #—x .

Lemma A.40. For any language L ∈
{ADD, SLDD+, SLDD×, AADD} and any operator
� ∈ {max,min,+,×}, if there exists a polynomial
algorithm mapping any L formula α to the value Elim�(α),
then L satisfies �Marg.

Proof. Consider an L formula α and a variable x, denot-
ing denoting Dx = {d1, . . . , dk}. The following ADD
formula β is a representation of the �-marginalization of
fLα on x: β has one root labeled with x, with k outgo-
ing arcs a1, . . . , ak, such that for each i ∈ {1, . . . , k},
v(ai) = di and ai points to a leaf Li with value
ϕ(Li) =

⊙
#—y ∈DVar(α)\{x}

fLα, #—y (〈x, di〉), that is, ϕ(Li) =

Elim�(fLα,〈x,di〉). Accordingly, if for any value di, the valu-
ation ϕ(Li) can be computed in time polynomial in the size
of α (i.e., if “full” variable elimination can be computed in
polynomial time from α once conditioned by x = di), then
β can be computed in time polynomial in the size of α.

Since all four languages satisfy CD (Proposition A.10),
this implies that if there exists a polynomial algorithm for
“full” variable elimination, then there exists a polynomial
algorithm building an ADD representation β of the marginal-
ization of any L formula on x. This shows the result when L
is ADD; now when L is SLDD+ (resp. SLDD×, resp. AADD), β
can be turned in linear time into an equivalent SLDD+ (resp.
SLDD×, resp. AADD) formula (Proposition A.7).

Proposition A.41. ADD, SLDD+, SLDD×, and AADD satisfy
�Marg for � ∈ {max,min}.

Proof. When � is max (resp. min), Elim�(α) is
simply the maximal (resp. minimal) value taken by
fLα. Since from Proposition A.13, each language
in {ADD, SLDD+, SLDD×, AADD} satisfies OPTmax (resp.
OPTmin), “full” variable max-elimination (resp. min-
elimination) can be done in polynomial time; hence from
Lemma A.40 we get that these languages all satisfy
maxMarg (resp. minMarg).

Proposition A.42. There exists a polynomial-time algo-
rithm mapping any AADD formula α to Elim+(α).

Proof. We show that “full” variable +-elimination on AADD
is polynomial because we can iteratively eliminate the last
variable in linear time.

Let X = {x1, . . . , xn} ⊆ X and y ∈ X ; let α be an AADD
formula overX ∪{y}, ordered in such a way that x1C · · ·C
xnCy. To simplify the proof, we suppose that every variable
in X ∪{y} is mentioned in every path of α; this is harmless,
since we never need to add more than (n+1)d arcs (with ϕ-
value 〈0, 1〉) per node in α (with d the cardinal of the largest
variable domain).

We have the following:

Elim+(α) =
∑

#—z ∈DX×Dy

fAADDα ( #—z )

=
∑

#—x∈DX

∑
#—y ∈Dy

fAADDα ( #—x · #—y )

For a given assignment #—x · #—y , let us consider the path p in α
corresponding to #—x · #—y . The path p contains n+ 1 arcs, that
we denote a1, . . . , an, an+1. For each i ∈ {1, . . . , n + 1},
we denote ϕ(ai) = 〈qi, fi〉; finally, the offset is as usual
〈q0, f0〉. By definition of the interpretation function of AADD,

fAADDα ( #—x · #—y ) = q0 + f0(q1 + f1(q2 + · · ·
· · ·+ fn(qn+1 + fn+1 × 0) · · · ))

= q0 + f0q1 + f0f1q2 + · · ·
· · ·+ f0 · · · fnqn+1

=

n+1∑
i=0

qi i−1∏
j=0

fj


=

n∑
i=0

qi i−1∏
j=0

fj

+ qn+1 ·
n∏
j=0

fj .

There are three elements in this formula:

• the valuation qn+1 of the y-arc, which is the last arc along
the path, and which we denote as ϕ #—x · #—y ;

• the “additive offset” given by the first n arcs,∑n
i=0

(
qi
∏i−1
j=0 fj

)
, which we denote as Q #—x ;

• the “multiplicative offset” given by the first n arcs,∏n
j=0 fj , that we denote as F #—x .

The key point is that neither Q #—x nor F #—x depends on #—y , so
we can write

Elim+(α) =
∑

#—x∈DX

∑
#—y ∈Dy

fAADDα ( #—x · #—y )

=
∑

#—x∈DX

∑
#—y ∈Dy

(Q #—x + ϕ #—x · #—y · F #—x )

=
∑

#—x∈DX

|Dy| ·Q #—x + F #—x ·
∑

#—y ∈Dy

ϕ #—x · #—y

 .

(1)



It is thus possible to transform α into another AADD for-
mula α′ that does not mention y and verifies Elim+(α′) =
Elim+(α) as follows. For each y-labeled node N , we com-
pute the value ϕN =

∑
a∈Out(N) qa. Then we update

the ϕ-label of each arc aIn ∈ In(N) so that it becomes
〈qaIn +

faIn
|Dy|ϕN , 0〉. We also modify the offset, which be-

comes 〈q0 ·|Dy|, f0 ·|Dy|〉. Finally, we merge all the y-nodes
into a new leaf.

We show that Elim+(α′) = Elim+(α); let us denote
〈q′, f ′〉 the ϕ-label of an arc in α′ when the corresponding
arc in α has label 〈q, f〉. We can rewrite the left part of the
sum in Equation 1:

|Dy| ·Q #—x = |Dy| ·
n∑
i=0

qi i−1∏
j=0

fj


= |Dy| · q0 +

n∑
i=1

qi · |Dy| · f0

i−1∏
j=1

fj


= q′0 +

n∑
i=1

qif ′0 i−1∏
j=1

fj


= q′0 +

n∑
i=1

qi i−1∏
j=0

f ′j

 ,

since for i ∈ {1, . . . , n− 1}, f ′i = fi. Isolating qn, we get

|Dy| ·Q #—x = q′0 +

n−1∑
i=1

qi i−1∏
j=0

f ′j

+ qn

n−1∏
j=0

f ′j

=

n−1∑
i=0

q′i i−1∏
j=0

f ′j

+ qn

n−1∏
j=0

f ′j ,

since for i ∈ {1, . . . , n − 1}, q′i = qi. As for the right part
of the sum in Equation 1:

F #—x ·
∑

#—y ∈Dy

ϕ #—x · #—y = f0

n−1∏
j=1

fj

 fn
∑

#—y ∈Dy

ϕ #—x · #—y

=

n−1∏
j=0

f ′j

 fn
|Dy|

∑
#—y ∈Dy

ϕ #—x · #—y ,

since f ′0 = f0 · |Dy| and for i ∈ {1, . . . , n − 1}, f ′i = fi.
Now, since q′n = qn + fn

|Dy|
∑

#—y ∈Dy ϕ
#—x · #—y , by summing the

two parts, we get

|Dy| ·Q #—x + F #—x ·
∑

#—y ∈Dy

ϕ #—x · #—y

=

n−1∑
i=0

q′i i−1∏
j=0

f ′j

+

n−1∏
j=0

f ′j

 q′n

=

n∑
i=0

q′i i−1∏
j=0

f ′j

 = fAADDα′ ( #—x ),

by definition of the interpretation function of AADD. Equa-
tion 1 can hence be rewritten as

Elim+(α) =
∑

#—x∈DX

fAADDα′ ( #—x ) = Elim+(α′).

The procedure thus eliminates the last variable without
changing the value of the “full” variable elimination; more-
over, it runs in linear time, and the resulting formula is al-
ways smaller than the original one. Hence, iteratively re-
peating the procedure for each variable in a bottom-up way,
and stopping when the resulting formula only contains a leaf
and an offset, we obtain Elim+(α) in time polynomial in the
size of α.

Corollary A.43. ADD, SLDD+, SLDD×, and AADD satisfy
+Marg.

Proof. Full variable +-elimination is polynomial on AADD.
Since any ADD (resp. SLDD+, SLDD×) formula can be turned
into an equivalent AADD formula in linear time (Proposi-
tion A.7), full variable +-elimination is also polynomial on
ADD (resp. SLDD+, SLDD×). Hence, from Lemma A.40, we
get that all four languages satisfy +Marg.

Proposition A.44. There exists a polynomial-time algo-
rithm mapping any SLDD× formula α to Elim×(α).

Proof. The proof is similar to that of full +-elimination in
AADD: we show that we can iteratively eliminate the last vari-
able in linear time. Let X = {x1, . . . , xn} ⊆ X and y ∈ X ;
let α be an SLDD× formula over X ∪ {y}, ordered in such a
way that x1C· · ·CxnCy. To simplify the proof, we suppose
that every variable in X ∪ {y} is mentioned in every path of
α. Lemma A.24 shows that this can be done in polynomial
time.

We have the following:

Elim×(α) =
∏

#—z ∈DX×Dy

fSLDD×α ( #—z )

=
∏

#—x∈DX

∏
#—y ∈Dy

fSLDD×α ( #—x · #—y )

For a given assignment #—x · #—y , let us consider the path p in α
corresponding to #—x · #—y . The path p contains n+ 1 arcs: we
denote as Φ #—x the product of the ϕ-labels of the first n arcs
and the offset, and as ϕ #—x · #—y the ϕ-label of the last arc. By
definition of the interpretation function of SLDD×,

fSLDD×α ( #—x · #—y ) = Φ #—x × ϕ #—x · #—y ,

and since Φ #—x does not depend on #—y , we get

Elim×(α) =
∏

#—x∈DX

∏
#—y ∈Dy

Φ #—x × ϕ #—x · #—y

=
∏

#—x∈DX

Φ #—x

∏
#—y ∈Dy

ϕ #—x · #—y

 .

Hence, it is possible to transform α into another
SLDD× formula α′ that does not mention y and verifies
Elim×(α′) = Elim×(α) as follows. For each y-labeled



Table 3: Results about basic queries, optimization, and γ-
cutting, together with the number of the proposition (or
corollary) proving each claim. The symbol legend is in Ta-
ble 1.

Query ADD SLDD+ SLDD× AADD

EQ
√

A.9
√

A.9
√

A.9
√

A.9
SE

√
A.34

√
A.36

√
A.35 ?

OPTmax, OPTmin
√

A.13
√

A.13
√

A.13
√

A.13
CTmax, CTmin

√
A.15

√
A.15

√
A.15

√
A.15

MEmax, MEmin
√

A.15
√

A.15
√

A.15
√

A.15
MXmax, MXmin

√
A.15

√
A.15

√
A.15

√
A.15

CUTmax, CUTmin
√

A.14
√

A.14
√

A.14
√

A.14
VA∼γ

√
A.12

√
A.17

√
A.17

√
A.17

VA�γ , VA�γ
√

A.12
√

A.16
√

A.16
√

A.16
CO∼γ

√
A.12 ◦ A.18 ◦ A.18 ◦ A.18

CO�γ , CO�γ
√

A.12
√

A.16
√

A.16
√

A.16
ME∼γ

√
A.12 ◦ A.21 ◦ A.21 ◦ A.21

ME�γ , ME�γ
√

A.12
√

A.23
√

A.23
√

A.23
MX∼γ

√
A.12 ◦ A.21 ◦ A.21 ◦ A.21

MX�γ , MX�γ
√

A.12
√

A.22
√

A.22
√

A.22
CUT∼γ

√
A.11 • A.27 • A.27 • A.27

CUT�γ , CUT�γ
√

A.11 • A.28 • A.29 • A.29
CT∼γ

√
A.12 ◦ A.21 ◦ A.21 ◦ A.21

CT�γ , CT�γ
√

A.12 ◦ A.26 ◦ A.26 ◦ A.26

node N , we compute the value ϕN = ×a∈Out(N)qa, then
we update the ϕ-label of each arc aIn ∈ In(N) so that it
becomes ϕ(aIn)×ϕN , and finally, we merge all the y-nodes
into a new leaf. The process is linear in the size of α, and it
should be clear that

f
SLDD×
α′ ( #—x ) = Φ #—x

∏
#—y ∈Dy

ϕ #—x · #—y ,

and thus that

Elim×(α) =
∏

#—x∈DX

f
SLDD×
α′ ( #—x ) = Elim×(α′).

Consequently, it is possible to eliminate the last variable
in an SLDD× formula in linear time, without changing the
value of the “full” variable elimination. Computing this
value can thus be done by eliminating every variable iter-
atively in a bottom-up way, stopping when the formula is
reduced to a leaf and an offset; since the size of the formula
is always decreasing, the overall procedure is polynomial-
time.

Corollary A.45. ADD and SLDD× satisfy ×Marg.

Proof. Full variable×-elimination is polynomial on SLDD×.
Since any ADD formula can be turned into an equivalent
SLDD× formula in linear time (Proposition A.7), full vari-
able ×-elimination is also polynomial on ADD. Hence,
from Lemma A.40, we get that ADD and SLDD× satisfy
+Marg.

Table 4: Results about transformations, together with the
number of the proposition (or corollary) proving each claim.
The symbol legend is in Table 1.

Transformation ADD SLDD+ SLDD× AADD

CD
√

A.10
√

A.10
√

A.10
√

A.10
maxBC, minBC

√
A.33 • A.31 • A.31 • A.31

+BC
√

A.33
√

A.33 • A.32 • A.32
×BC

√
A.33 • A.32

√
A.33 • A.32

maxC, minC • A.30 • A.30 • A.30 • A.30
+C • A.30 • A.30 • A.30 • A.30
×C • A.30 • A.30 • A.30 • A.30

maxElim, minElim • A.38 • A.38 • A.38 • A.38
+Elim • A.38 • A.38 • A.38 • A.38
×Elim • A.38 • A.38 • A.38 • A.38

SmaxElim, SminElim • A.38 • A.38 • A.38 • A.38
S+Elim • A.38 • A.38 • A.38 • A.38
S×Elim • A.38 • A.38 • A.38 • A.38

SBmaxElim, SBminElim
√

A.39 • A.39 • A.39 • A.39
SB+Elim

√
A.39

√
A.39 • A.39 • A.39

SB×Elim
√

A.39 • A.39
√

A.39 • A.39
maxMarg, minMarg

√
A.41

√
A.41

√
A.41

√
A.41

+Marg
√

A.43
√

A.43
√

A.43
√

A.43
×Marg

√
A.45 ?

√
A.45 ?


